(Đề thi tuyển sinh vào 10 - Bắc Giang)
Để chuẩn bị cho năm học mới, học sinh hai lớp 9A và 9B ủng hộ thư viện 738 quyển sách gồm sách giao khoa và sách tham khảo. Trong đó mỗi học sinh lớp 9A ủng hộ 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B ủng hộ 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh của mỗi lớp.
Gọi số học sinh của lớp 9A là x (học sinh), số học sinh lớp 9B là y (học sinh) (ĐK: x,y∈N∗x,y∈N∗)
Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 4y (quyển)
Từ đó ta có:
Số sách giáo khoa cả hai lớp đã ủng hộ là 6x+5y6x+5y (quyển)
Số sách tham khảo cả hia lớp đã ủng hộ là 3x+4y3x+4y (quyển)
Vì cả hai lớp ủng hộ 738 quyển nên ta có phương trình6x+5y+3x+4y=9x+9y=738(1)6x+5y+3x+4y=9x+9y=738(1)
Và số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình (6x+5y)−(3x+4y)=3x+y=166(2)(6x+5y)−(3x+4y)=3x+y=166(2)
Từ (1) và (2) ta có hệ phương trình
{9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm){9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm)
Vậy số học sinh của lớp 9A là 42 học sinh, số học sinh lớp 9B là 40 học sinh.
Gọi số học sinh của lớp 9A,9C9A,9C lần lượt là x,yx,y ( học sinh ) (ĐK:x,y>0(ĐK:x,y>0
Theo bài ra ta có :
{Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển){Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
{Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển){Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển)
⇒⇒ {Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển){Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển)
+)+) Cả 22 lớp ủng hộ thư viện 738738 quyển sách nên ta có phương trình.
6x+5y+3x+4y=7386x+5y+3x+4y=738
⇔9x+9y=738⇔9x+9y=738
⇔x+y=82⇔x+y=82 (1)(1)
+)+) Số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166166 quyển nên ta có phương trình.
(6x+5y)−(3x+4y)=166(6x+5y)-(3x+4y)=166
⇔3x+y=166⇔3x+y=166 (2)(2)
Từ (1);(2)⇒(1);(2)⇒ {x+y=823x+y=166{x+y=823x+y=166
⇔⇔{3x+3y=246(3)3x+y=166(4){3x+3y=246(3)3x+y=166(4)
Lấy (3)−(4)(3)-(4) ta được : 3x+3y−(3x+y)=246−1663x+3y-(3x+y)=246-166
⇔2y=80⇔2y=80
⇔y=40(TM)⇔y=40(TM)
(3)⇒x=42(TM)(3)⇒x=42(TM)
Vậy: Số học sinh của lớp 9A9A là 4242 hs
Số học sinh của lớp 9C9C là 4040 hs