Bài 1: Tính:
\(\frac{4}{5}+\frac{2}{5};\) \(\frac{1}{6}+\frac{2}{6}+\frac{5}{6};\) \(\frac{2}{5}+\frac{3}{4};\) \(\frac{4}{7}+\frac{3}{4}+\frac{2}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm ai trên 11 điểm tích mình thì mình tích lại
Ông tùng hơn tùng số tuổi là :
29 + 32 = 61 (tuổi )
Vậy ông của tùng hơn tùng 61 tuổi
bài 1:
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
\(=\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}\)
\(=\frac{11}{11}+\frac{1}{3}=1+\frac{1}{3}=\frac{3}{3}+\frac{1}{3}=\frac{4}{3}\)
bài 2:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\left(\frac{1}{2}+\frac{1}{20}\right)+\left(\frac{1}{6}+\frac{1}{12}\right)\)
\(=\frac{11}{20}+\frac{1}{4}=\frac{11}{20}+\frac{5}{20}=\frac{15}{20}=\frac{3}{4}\)
bài 3:
a) \(\frac{3}{2}\cdot\frac{4}{5}\cdot\frac{2}{3}=\left(\frac{3}{2}\cdot\frac{2}{3}\right)\cdot\frac{4}{5}=1\cdot\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\cdot\frac{5}{3}\cdot\frac{7}{6}=\left(\frac{6}{7}\cdot\frac{7}{6}\right)\cdot\frac{5}{3}=1\cdot\frac{5}{3}=\frac{5}{3}\)
bài 4:
a) \(\frac{2}{5}\cdot\frac{1}{4}+\frac{3}{4}\cdot\frac{2}{5}=\frac{2}{5}\cdot\left(\frac{1}{4}+\frac{3}{4}\right)=\frac{2}{5}\cdot1=\frac{2}{5}\)
b) \(\frac{6}{11}:\frac{2}{3}+\frac{5}{11}:\frac{2}{3}=\left(\frac{6}{11}+\frac{5}{11}\right):\frac{2}{3}=1:\frac{2}{3}=\frac{3}{2}\)
Bài 1:
6/11 + 1/3 + 5/11
= ( 6/11 + 5/11) + 1/3
= 11/11 + 1/3
= 1 + 1/3
= 3/3 +1/3
= 4/3
Bài 2:
1/2 + 1/6 + 1/12 + 1/20
= ( 1/2 + 1/6 + 1/12 ) + 1/20
= ( 6/12 + 2/12 + 1/12 ) + 1/20
=9/12 + 1/20
= 3/4 +1/20
= 15/20 + 1/20
= 16/20 = 4/5
Bài 3:
a) \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\) \(=\left(\frac{3}{2}\times\frac{2}{3}\right)\times\frac{4}{5}\)\(=1\times\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\times\left(\frac{5}{3}\times\frac{7}{6}\right)\) \(=\frac{6}{7}\times\frac{35}{18}\)\(=\frac{1\times5}{7\times3}=\frac{5}{21}\)
Bài 4:
a) 2/5 x 1/4 + 3/4 x 2/5
= 2/5 x ( 1/4 + 3/4)
= 2/5 x 1
= 2/5
b) 6/11 : 2/3 +5/11 : 2/3
= ( 6/11 + 5/11) x 3/2
= 11/11 x 3/2
= 1 x 3/2
= 3/2
....
a)\(\frac{2}{3}+\frac{3}{4}+\frac{5}{6}\)
\(=\frac{8+9+10}{12}\)
\(=\frac{27}{12}=\frac{9}{4}\)
b)\(\frac{15}{8}-\frac{7}{12}+\frac{5}{6}\)
\(=\frac{45-14+20}{24}\)
\(=\frac{51}{24}=\frac{17}{8}\)
2)
a)\(\frac{2}{5}+\frac{7}{13}+\frac{3}{5}+\frac{1}{7}\)
\(=\frac{2}{5}+\frac{3}{5}+\frac{7}{13}+\frac{1}{7}\)
\(=1+\frac{7}{13}+\frac{1}{7}\)
\(=\frac{20}{13}+\frac{1}{7}\)
\(=\frac{153}{91}\)
Tí tớ trả lời tiếp
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)= \(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
= \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
= \(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)= \(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
= \(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
= \(\frac{7}{22}\)
\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
\(=3-\frac{1}{4}+\frac{2}{3}-5-\frac{1}{3}+\frac{6}{5}-6+\frac{7}{4}-\frac{3}{2}\)
\(=\left(3-5-6\right)+\left(-\frac{1}{4}+\frac{7}{4}-\frac{3}{2}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+\frac{6}{5}\)
\(=-8+\frac{1}{3}+\frac{6}{5}\)
\(=-\frac{97}{15}\)
= 3 - 1/4 +2/3 - 5 - 1/3 + 6/5 - 6 + 7/4 - 3/2
= 2/3 . -3/2 . ( 3 + 5 + 6 ) . ( 2/3 + 1/3 ) . ( -1/4 - 7/4)
= -1 . 14 . 1 . 6/4
= -14 . 1 . 6/4
= -14 . 6/4
= -84/4 = -21
Bài 1: \(\frac{4}{5}+\frac{2}{5}=\frac{6}{5}\) ; \(\frac{1}{6}+\frac{2}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\) ; \(\frac{2}{5}+\frac{3}{4}=\frac{8}{20}+\frac{15}{20}=\frac{23}{20}\);\(\frac{4}{7}+\frac{3}{4}+\frac{2}{7}=\frac{6}{7}+\frac{3}{4}=\frac{24}{28}+\frac{21}{28}=\frac{45}{28}\)
6/5 ; 8/6 ; 23/20 ; 45/28