Tìm tập nghiệm của phương trình:
(x+3)(x+2)-x(x-4)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\({x^2} - 2x - 3 = 0 \Leftrightarrow (x + 1)(x - 3) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right. \Rightarrow E = \{ - 1;3\} \)
Lại có: \((x + 1)(2x - 3) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = \frac{3}{2}\end{array} \right.\)
\( \Rightarrow G = \left\{ { - 1;\frac{3}{2}} \right\}\)
\( \Rightarrow P = E \cap G = \left\{ { - 1} \right\}\).
Xét phương trình \(x^2-2x-3=0\) có: \(a-b+c=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{c}{a}=3\end{matrix}\right.\Rightarrow E=\left\{-1;3\right\}.\)
Xét phương trình \(\left(x+1\right)\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{2}\end{matrix}\right.\Rightarrow G=\left\{-1;\dfrac{3}{2}\right\}.\)
\(\Rightarrow P=E\cap G=\left\{-1\right\}.\)
Ta có: \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)
\( \Rightarrow A = \{ 1; - 2\} \)
Ta có: \(2{x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x = - 2\end{array} \right.\)
\( \Rightarrow B = \left\{ {\frac{3}{2}; - 2} \right\}\)
Vậy \(C = A \cap B = \{ - 2\} \).
\(\Leftrightarrow x-1-5x-4+5x^2-10x=0\)
\(\Leftrightarrow5x^2-14x-5=0\)
\(\text{Δ}=\left(-14\right)^2-4\cdot5\cdot\left(-5\right)=296>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{74}}{10}=\dfrac{7-\sqrt{74}}{5}\\x_2=\dfrac{7+\sqrt{74}}{5}\end{matrix}\right.\)
\(\left(x-1\right)-\left(5x+4\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x-1-5x-4+5x^2-10x=0\\ \Leftrightarrow5x^2-14x-5=0\)
\(\Delta=\left(-14\right)^2-4.5.\left(-5\right)=196+100=296\)
\(x_1=\dfrac{-\left(-14\right)+\sqrt{296}}{2.5}=\dfrac{14+2\sqrt{74}}{10}=\dfrac{7+\sqrt{74}}{5}\)
\(x_2=\dfrac{-\left(-14\right)-\sqrt{296}}{2.5}=\dfrac{14-2\sqrt{74}}{10}=\dfrac{7-\sqrt{74}}{5}\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a. Đúng
Vì x 2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x 2 – x + 1 = x - 1 / 2 2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1
Do vậy phương trình không thể có nghiệm x = - 1
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình
Ta có: x − 3 x − 2 ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là x − 3 ≥ 0 x − 2 = 0 ⇔ x ≥ 3 x = 2
Vậy tập nghiệm của bất phương trình là S = { 2 } ∪ [3;+ ∞ )
Ta có: ( x - 3 ) ( x - 2 ) ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là
Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3
a) Phương trình: \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)
Ta có: \(\Delta = 9 - 4.2 = 1 > 0\)
Phương trình (1) có hai nghiệm \(\left\{ \begin{array}{l}{x_1} = \frac{{3 + 1}}{{2.1}} = 2\\{x_1} = \frac{{3 - 1}}{{2.1}} = 1\end{array} \right.\) => \({S_1} = \left\{ {1;2} \right\}\)
Phương trình: \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\) => \({S_2} = \left\{ {1;2} \right\}\)
b) Hai tập \({S_1};{S_2}\) có bằng nhau
Ta có:
Tập nghiệm của phương trình là \({S_1} = \left\{ 2 \right\}\)
\(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\; \Leftrightarrow x - 2 = 0\; \Leftrightarrow x = 2\)
Tập nghiệm của phương trình là \({S_2} = \left\{ 2 \right\}\)
Vậy tập nghiệm của 2 phương trình là tương đương.
\(\Leftrightarrow x^2+5x+6-x^2+4x=0\)
=>9x+6=0
hay x=-2/3
pt⇔ \(x^2+5x+6-x^2+4x=0\)
\(\Leftrightarrow9x+6=0\)
\(\Rightarrow x=\dfrac{-6}{9}\)