Tìm a biết đa thức \(a^2.x^{2014}-5a.x^{2015}-24x^{2016}\)nhận x= 1 là nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đa thức này nhận x=1 làm nghiệm thì \(a^2\cdot1^{2014}-5a\cdot1^{2015}-24\cdot1^{2016}=0\)
\(\Leftrightarrow a^2-5a-24=0\)
=>(a-8)(a+3)=0
=>a=8 hoặc a=-3
a) \(P\left(x\right)=0\Rightarrow x^{2016}-x^{2014}=0\Rightarrow x^{2014}\left(x^2-1\right)=0\)
TH1: \(x^{2014}=0\Rightarrow x=0\)
TH2: \(x^2-1=0\Rightarrow x=\pm1\)
Vậy \(P\left(x\right)\) có nghiệm là \(x=0,x=1,x=-1\)
b) Xét \(x< 0\)
Ta có: \(x^{2016}>0\Rightarrow-x^{2016}< 0\); \(2015x< 0\)
\(\Rightarrow Q\left(x\right)=-x^{2016}+2015x-1< 0\)
Vậy \(Q\left(x\right)\) không có nghiệm âm
a, Đặt \(P\left(x\right)=x^{2016}-x^{2014}=0\Leftrightarrow x^{2014}\left(x^2-1\right)=0\Leftrightarrow x=0;x=-1;x=1\)
P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x
Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên
Ta có P(x)= x4+ax3+bx2+cx+d
Đặt P(x)= (x-2013)(x-2014)(x-2015)(x-x0)+mx2+nx+p
P(2013)=2014=>4052169m+2013n+p=2014} m=0
P(2014)=2015=>4056196m+2014n+p=2015}=> n=1
P(2015)=2016=>4060225m+2015n+p=2016} p=1
=>P(x)= (x-2013)(x-2014)(x-2015)(x-x0)+x+1
=>.) P(2012)= -6(2012-x0)+2012+1
= -12072+6x0+2013=-10059+6x0
.)P(2016)=6(2016-x0)+2016+1
=12096-6x0+2017=14113-6x0
=> P(2012)+P(2016)= -10059+6x0+14113-6x0=4054
a) Nghiệm bằng 1 nha: 1^2016-1^2014=1-1=0
b)Không có nghiệm âm còn vì sao thì đợi lhi bạn k đug cho mk xog thì mk giải thick cho nha!
x2016-x2014=0
x2014*(x2-1)=0
TH1:
x2014=0
x=0
TH2
x2-1=0
x2=1
x=1
k mình nha
Thay x=1 vào đa thức ta có:
\(a^2.x^{2014}-5a.x^{2015}-24.x^{2016}=0\\ \Leftrightarrow a^2.1^{2014}-5a.1^{2015}-24.1^{2016}=0\\ \Leftrightarrow a^2-5a-24=0\\ \Leftrightarrow\left(a^2-8a\right)+\left(3a-24\right)=0\\ \Leftrightarrow a\left(a-8\right)+3\left(a-8\right)=0\\ \Leftrightarrow\left(a-8\right)\left(a+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=8\\a=-3\end{matrix}\right.\)
thank you very much!