Tính:
\(S=1+2.5+2.5^2+3.5^3+...+100.5^{99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=(-1)+(-3)+(-5)+...+(-99)
Dãy số trên là dãy số cách đều -4 đơn vị và có 51 số hạng.
\(\Rightarrow\) Q = [ -99 + ( -1) . 51 : 2 = -2550
Vậy Q= -2500
S= \(\dfrac{1}{2.5}\) + \(\dfrac{1}{5.8}\) + \(\dfrac{1}{8.10}\) + ... + \(\dfrac{1}{47.50}\)
S= \(\dfrac{1}{3}\) . ( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\) + ... + \(\dfrac{3}{47.50}\) )
S= \(\dfrac{1}{3}\) . ( \(\dfrac{1}{2}\) - \(\dfrac{1}{50}\) )
S = \(\dfrac{1}{3}\) . \(\dfrac{12}{25}\)
S= \(\dfrac{4}{25}\)
Vậy S = \(\dfrac{4}{25}\)
2.25.9+{[2.125-(5x+4).5]:(4.3.5)}=453
50.9+{[350-(5x+4).5]:60}=453
450+{[350-(5x+4).5]:60}=453
[350-(5x+4).5]:60=453-450
[350-(5x+4).5]:60=3
350-(5x+4).5=3.60
350-(5x+4).5=180
350-(5x+4)=180:5
350-(5x+4)=36
5x+4=350-36
5x+4=314
5x=314-4
5x=310
x=310:5
x=62
Giải ko cần sử dụng nhị thức Newton:
\(S=5+2.5^2+3.5^3+...+49.5^{49}+50.5^{50}\)
\(\Rightarrow5S=5^2+2.5^3+3.5^4+...+49.5^{50}+50.5^{51}\)
Trừ dưới cho trên:
\(4S=-5-5^2-5^3-5^4-...-5^{50}+50.5^{51}\)
\(\Rightarrow4S=5.5^{51}-\left(5+5^2+...+5^{50}\right)\)
Chú ý rằng trong ngoặc là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=5\\q=5\end{matrix}\right.\)
\(\Rightarrow4S=5.5^{51}-\frac{5^{51}-5}{4}=\frac{19}{4}.5^{51}+\frac{5}{4}\)
\(\Rightarrow S=\frac{19.5^{51}+5}{16}\)