Cho đa thức \(A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\)
a) Thu gọn A. Tìm bậc của đa thức A
b) Tính giá trị biểu thức A tại x = 0,1 và y = -2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1, y=1 vào A ta có:
\(A=4x^3y-xy-\dfrac{9}{2}x^3y+3xy-1\\
=-\dfrac{1}{2}x^3y+2xy-1\\
=-\dfrac{1}{2}.\left(-1\right)^3.1+2.\left(-1\right).1-1\\
=\dfrac{1}{2}-2-1\\
=
-\dfrac{5}{2}\)
\(A=-2xy^2+xy^2+\dfrac{1}{3}x^3y-\dfrac{1}{3}x^3y-x+x-4x^2y=-xy^2-4x^2y\)
bậc là 3
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5
Bậc: 10
b: y=-x/3 và x+y=2
=>x+y=2 và -1/3x-y=0
=>x=3 và y=-1
Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5
\(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
a) \(B=\left(-2+1\right)xy^2+\left(\frac{1}{3}-\frac{1}{3}\right)x^3y+\left(x-x\right)-4x^2y\)
\(B=-xy^2+x^3y+\left(-4\right)x^2y\)
\(B=-xy^2+x^3y-4x^2y\)
b) -xy2 có bậc là 3
x3y có bậc là 4
-4x2y có bậc là 3
=> Bậc của B = 4
c) x = 1 ; y = 2
Thay x = 1 ; y = 2 vào B ta có :
\(B=-xy^2+x^3y-4x^2y\)
\(B=-\left(1\cdot2^2\right)+1^3\cdot2-4\cdot1^2\cdot2\)
\(B=-4+2-8\)
\(B=-10\)
Vậy giá trị của B = -10 khi x = 1 ; y = 2
a, \(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
\(=-2xy^2+\frac{x^3y}{3}-x-\frac{x^3y}{3}+xy^2+x-4x^2y\)
\(=-xy^2-4x^2y\)
b,
Bậc của -xy2 = 3
Bậc của x3y = 4
Bậc của -4x2y = 3
Bậc của B = 4
c, Thay x = 1 ; y = 2 vào đon thức trên ta đc
\(-\left(1.2^2\right)-4.1^2.2=-4-4.1.2=-4-8=-12\)
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)
Bậc: 2
b, Thay x=0,1 và y=-2 vào A ta có:
\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)