K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

a, Ta có ^ABC > ^ACB => AC > AB 

a: Xét ΔABC có \(\widehat{ABC}>\widehat{ACB}\)

mà cạnh đối diện với góc ABC là cạnh AC

và cạnh đối diện với góc ACB là cạnh AB

nên AC>AB

b: Xét ΔABC có AC>AB

mà hình chiếu của AC trên BC là HC

và hình chiếu của AB trên BC là HB

nên HC>HB

c: Xét ΔKBC có HC>HB

mà HC là hình chiếu của KC trên BC

và HB là hình chiếu của KB trên BC

nên KC>KB

5 tháng 4 2020

1. Xét tam giác AHC có : AHC = 90 độ 

=> AC > AH ( AC là cạnh huyền ) 

2. Xét tam giác AHB có : AHB = 90 độ 

=> AB > AH ( AB là cạnh huyền ) 

9 tháng 7 2019

A B C D E H F

Tam giác ABC có : góc ABC > góc ACB (gt)

=> AC > AB (đl)

AD _|_ BC (gt) 

D thuộc BC

=> BD < DC

H thuộc AD 

=> HB < HC  

b, AD; BE là đường cao

ADcắt BE tại H 

=> CH là đường cao (đl)

=> CH _|_ AB (đn)

HF _|_ AB (gt)

=> C; H; F thẳng hàng

9 tháng 7 2019

c.

\(AB>AD;AC>AD\left(ch>cgv\right)\)

\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)

d

Kẻ \(HN//AC;HM//AB\)

Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)

Áp dụng bất đẳng thức tam giác ta có:

\(HA< AM+HM=AM+AN\left(1\right)\)

Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)

Xét  \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)

Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)

Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)

Tương tự,ta có:

\(HA+HB+HC< AB+BC\)

\(HA+HB+HC< BC+AC\)

\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)

\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)