Cho DABC vuông ở A. TRên tia đối của tia AC lấy điểm D sao cho AD = AC.
a. Chứng minh DABC = DABD
b. Trên tia đối của tia AB, lấy điểm M. Chứng minh DMBD = D MBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
b: Xét ΔMDC có
MA là đường cao
MA là đường trung tuyến
Do đó:ΔMDC cân tại M
Xét ΔMBD và ΔMBC có
MB chung
BD=BC
MD=MC
Do đó: ΔMBD=ΔMBC
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
Suy ra: ABC=ABD
b) Vì △ABC = △ABD
=> BC = BD và ˆABC=ˆABDABC^=ABD^
Xét tam giác △MBD và △MBC
Có MB: cạnh chung
MBD=MBC
BD = BC
=> △MBD = △MBC
a: Xét ΔKAB và ΔKDC có
KA=KD
\(\widehat{AKB}=\widehat{CKD}\)(hai góc đối đỉnh)
KB=KC
Do đó: ΔKAB=ΔKDC
=>\(\widehat{KAB}=\widehat{KDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
b: Ta có: AB//CD
AB\(\perp\)AC
Do đó: CD\(\perp\)CA
Xét ΔABC vuông tại A và ΔCDA vuông tại C có
AB=CD(ΔKAB=ΔKDC)
AC chung
Do đó: ΔABC=ΔCDA
c: Ta có: ΔABC=ΔCDA
=>BC=DA
mà AK=AD/2 và CK=CB/2
nên AK=CK
=>ΔKAC cân tại K
Ta có: ΔKAC cân tại K
mà KH là đường trung tuyến
nên KH là phân giác của góc AKC
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
Suy ra: \(\widehat{ABC}=\widehat{ABD}\)
b: Xét tứ giác BEDC có
A là trung điểm của BD
A là trung điểm của EC
Do đó: BEDC là hình bình hành
Suy ra: BE//CD