Chứng minh rằng: 1257 - 259 chia hết cho 124.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. D = ( 5 + 5^2 ) + ... + ( 5^99 + 5^100 )
D = 5 ( 1 + 2 ) + ... + 5^99 ( 1 + 2 )
D = 5 . 6 + ... + 5^99 . 6
D = 6 ( 5 + ... + 5^99 ) chia hết cho 6 ( đpcm )
2. gợi ý : nhóm 5 số vào một
3. Đề phải là 165 - 215
165 - 215
= (24)5 - 215
= 220 - 215
= 215 ( 25 - 1 )
= 215 . 31 chia hết cho 31
4. đề sai
c) \(55-7.\left(x+3\right)=6\)
\(7.\left(x+3\right)=55-6\)
\(7.\left(x+3\right)=49\)
\(x+3=49:7\)
\(x+3=7\)
\(x=7-3\)
\(x=4\)
d) \(-14-x+\left(-15\right)=-10\)
\(-29-x=-10\)
\(x=-29+10\)
\(x=-19\)
-----------------------------
Số số hạng của A:
\(60-1+1=60\) (số)
Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+...+2^{55}.63\)
\(=63.\left(2+2^7+...+2^{55}\right)\)
\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)
Vậy \(A⋮21\)
55-7(x+3)=6
7(x+3)=55-6=49
(x+3)=49:7=7
x=7-3=4
(-14)-x + (-15)=-10
(-14)-x=-10-15=-25
x =-14-25=-39
A chia hết 31 chứ
Đề sai, viết lại thành:
A= 21+22+23+24+...+259+260
Giải:
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 ⋮ 7(đpcm)
a, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)
\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)
\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)
b, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)
\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)
\(M=6\cdot259+...+6^{96}\cdot259\)
\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)
Vậy \(M⋮259(đpcm)\)
a: \(2A=2^2+2^3+...+2^{61}\)
=>A=2^61-2
b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)
Từ (1), (2) suy ra A chia hết cho 21
Ta có:
1257 - 259
= (53)7 - (52)9
= 521 - 518
= 518 . ( 53 - 1 )
= 518 . ( 125 - 1 ) = 518 . 124 chia hết cho 124 => 1257 - 259 chia hết cho 124
Chứng tỏ 1257 - 259 chia hết cho 124
Tại sao lại là ( 5^3 - 1) hả bạn ??