Trường hợp a cũng là nguyên duơng Xét a<b và a>b. Xét a<b trước, ta có: 1-a/b=(b-a)/a..............(1) 1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1... Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
Xét a>b, ta đặt a=b+m=>a+n=b+m+n vậy: a/b=(b+m)/b= 1+m/b.....(3) (a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)... So sánh (3) và (4) cho ta a/b<(a+n)/(b+n)
Nếu a là nguyên âm thì bạn có trừong hợp ngược lại Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Mình nghĩ là vậy
Nếu đúng nhớ
Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
Xét a>b, ta đặt a=b+m=>a+n=b+m+n
vậy: a/b=(b+m)/b= 1+m/b.....(3)
(a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)...
So sánh (3) và (4) cho ta a/b<(a+n)/(b+n)
Nếu a là nguyên âm thì bạn có trừong hợp ngược lại
Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b
Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b