cho 1+x+y+z=2xyz
tìm giá trị nhỏ nhất và xác định giá trị đó của
P=xy/{1+x+y}+yz/{1+y+z}+zx/{1+z+x}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)
Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);
\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)
Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)
Vậy Min P = 1 tại x= y = z = 1/3
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Cách 1:
Ta có \(A=xy+yz+2zx\)
\(\Rightarrow A+1=x^2+y^2+z^2+xy+yz+2zx\)
\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}y=0\\x=-z\end{cases}}\)
Ta có : \(\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge\frac{-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\)
Lại có : \(\left(x+z\right)^2\ge0\Rightarrow xz\ge\frac{-\left(x^2+z^2\right)}{2}=\frac{y^2-1}{2}\ge-\frac{1}{2}\)
Khi đó : \(xy+yz+2zx\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=o\\x^2=z^2=\frac{1}{2}\end{cases}}\)
Lời giải:
Đặt
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy:
Vậy
Bạn bôi xanh câu hỏi của bạn rồi kéo thả lên chỗ tìm kiếm ; tìm
Tìm GTNN của S=xy/z+yz/x+zx/y biết x^2+y^2+z^2=1 - H7.netOK !
Sửa lại đề là x;y;z khác -1.
\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:
\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)
\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm
Sorry nha!! mình mới học lớp 4 Thôi à!