Tìm x biết \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1/21+1/28+1/36+...+2/[x.(x+1)]=2/9
=>2/42+2/56+2/72+...+2/[x.(x+1)]=2/9
=>2.(1/42+1/56+1/72+...+1/[x.(x+1)])=2/9
=>2.(1/6-1/7+1/7-1/8+1/8-1/9+...+1/x-1/(x+1))=2/9
=>1/6-1/(x+1)=1/9
=>1/(x+1)=1/18
=>x+1=18
=>x=17
Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{21.2}+\frac{1}{28.2}+\frac{1}{36.2}...+\frac{2}{x.\left(x+1\right).2}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6.4}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}-\frac{1}{x+1}\)
\(\Rightarrow A=\left(\frac{1}{6}-\frac{1}{x+1}\right):\frac{1}{2}\)
Theo bài ra ta có :
\(\left(\frac{1}{6}-\frac{1}{x+1}\right):\frac{1}{2}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}.\frac{1}{2}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{18}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{2}{18}\)
\(\frac{1}{x+1}=\frac{3}{18}-\frac{2}{18}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=18-1\)
\(\Rightarrow x=17\)
Vậy x = 17