K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2016

Ta đặt:

\(\frac{x^3}{x^3}\)và \(\frac{y^3}{x^3}\)

Vì \(\frac{x^3}{x^3}=1\)\(\frac{y^3}{x^3}< 1\left(x>y\right)\)

=> \(x^3>y^3\)

29 tháng 5 2016

- Xét nếu x < 0 thì y < 0 nhưng y < x => x.x.x > y.y.y => x3 > y3

- Xét nếu x > 0 thì y < 0 hoặc y > 0 nhưng y < x=> x.x.x > y.y.y => x3 > y3

3 tháng 4 2018

Ta có \(P=x^2-x+y^2-y=>\)\(P=x^2+y^2-\left(x+y\right)\)(1)

Mặt Khác : Áp dụng BĐT Cauchy : \(\hept{\begin{cases}x^2+9\ge6x\\y^2+9\ge6y\end{cases}}\)(2)

Từ (1) (2) =>\(P\ge6\left(x+y\right)-18-\left(x+y\right)\)

=> \(P\ge6.6-18-6\)=> \(P\ge12\)(đpcm)

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

1 tháng 9 2016

\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)

\(x>y\Rightarrow x^4>y^4\)

\(y>z\Rightarrow y-z>0\) 

\(x>z\Rightarrow z-x< 0\) 

\(\Rightarrow y-z>z-x\)

 \(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)

\(x>y\Rightarrow x-y>0\)

Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)

5 tháng 8 2017

ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y 
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0 
  k cho mik nhoa~

5 tháng 8 2017

Đúng ko

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

12 tháng 1 2016

a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y

b, tương tự thôi (giống như phần a)

tick nha Ngọc ! (>^_^<)