Cho x>y;x,y khác 0. Chứng minh x^3>y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(P=x^2-x+y^2-y=>\)\(P=x^2+y^2-\left(x+y\right)\)(1)
Mặt Khác : Áp dụng BĐT Cauchy : \(\hept{\begin{cases}x^2+9\ge6x\\y^2+9\ge6y\end{cases}}\)(2)
Từ (1) (2) =>\(P\ge6\left(x+y\right)-18-\left(x+y\right)\)
=> \(P\ge6.6-18-6\)=> \(P\ge12\)(đpcm)
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)
\(x>y\Rightarrow x^4>y^4\)
\(y>z\Rightarrow y-z>0\)
\(x>z\Rightarrow z-x< 0\)
\(\Rightarrow y-z>z-x\)
\(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)
\(x>y\Rightarrow x-y>0\)
Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)
ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0
k cho mik nhoa~
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
vì x,y,z>0 nên áp dụng bđt côsi ta có
x+y >= 2\(\sqrt{xy}\)
y+z >= 2\(\sqrt{yz}\)
z+x >= 2\(\sqrt{xz}\)
\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)
>= 8xyz
Dấu = xảy ra <=> x=y=z
a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y
b, tương tự thôi (giống như phần a)
tick nha Ngọc ! (>^_^<)
Ta đặt:
\(\frac{x^3}{x^3}\)và \(\frac{y^3}{x^3}\)
Vì \(\frac{x^3}{x^3}=1\)\(\frac{y^3}{x^3}< 1\left(x>y\right)\)
=> \(x^3>y^3\)
- Xét nếu x < 0 thì y < 0 nhưng y < x => x.x.x > y.y.y => x3 > y3
- Xét nếu x > 0 thì y < 0 hoặc y > 0 nhưng y < x=> x.x.x > y.y.y => x3 > y3