K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

ĐKXĐ : x ≥ 0

<=> \(x-5\sqrt{x}+2\sqrt{x}-10=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)=0\)

<=> \(\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)=0\)(1)

Vì \(\sqrt{x}+2\ge2>0\forall x\ge0\)

nên (1) <=> \(\sqrt{x}-5=0\)<=> \(\sqrt{x}=5\)<=> x = 25 (tm)

Vậy pt có nghiệm x = 25

18 tháng 5 2021

ĐK: x\ge0x0

x-3\sqrt{x}-10=0x3x10=0

Đặt \sqrt{x}=t\left(t\ge0\right)x=t(t0). Khi đó phương trình trở thành t^2-3t-10=0t23t10=0

\Leftrightarrow\left(t^2-5t\right)+\left(2t-10\right)=0\Leftrightarrow\left(t+2\right)\left(t-5\right)=0(t25t)+(2t10)=0(t+2)(t5)=0

\Leftrightarrow\left[{}\begin{matrix}t+2=0\\t-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-2\left(l\right)\\t=5\left(n\right)\end{matrix}\right.[t+2=0t5=0[t=2(l)t=5(n)

Với t = 5 ta có \sqrt{x}=5\Leftrightarrow x=25\left(tmđk\right)x=5x=25(tmđk)

Vậy phương trình có nghiệm x = 25.

20 tháng 3 2021

ĐKXĐ : x ≥ 1

<=> \(x^2\left(x-1\right)-x\sqrt{x-1}-2=0\)

Đặt \(x\sqrt{x-1}=t\)( t ≥ 0 )

pt <=> t2 - t - 2 = 0

<=> ( t + 1 )( t - 2 ) = 0

<=> t = -1 (ktm) hoặc t = 2 (tm)

=> \(x\sqrt{x-1}=2\)

<=> x2( x - 1 ) = 4 ( bình phương hai vế )

<=> x3 - x2 - 4 = 0

<=> x3 - 2x2 + x2 - 4 = 0

<=> x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0

<=> ( x - 2 )( x2 + x + 2 ) = 0

<=> x - 2 = 0 hoặc x2 + x + 2 = 0

+) x - 2 = 0 <=> x = 2 (tm)

+) x2 + x + 2 = 0

Δ = b2 - 4ac = 1 - 8 = -7

Δ < 0 => vô nghiệm

Vậy pt có nghiệm x = 2

20 tháng 3 2021

\(\sqrt{5x-x^2}+2x^2-10x+6=0\)

ĐKXĐ : \(0\le x\le5\)

<=> \(\sqrt{5x-x^2}-2\left(5x-x^2\right)+6=0\)

Đặt \(\sqrt{5x-x^2}=t\)( t ≥ 0 ) ta được phương trình :\(t-2t^2+6=0\)(*)

Δ = b2 - 4ac = 1 + 48 = 49

Δ > 0 nên (*) có hai nghiệm phân biệt t1 = -3/2 (ktm) ; t2 = 2 (tm)

=> \(\sqrt{5x-x^2}=2\)

<=> 5x - x2 = 4 ( bình phương hai vế )

<=> x2 - 5x + 4 = 0 (1)

Dễ thấy (1) có a + b + c = 1 - 5 + 4 = 0 nên có hai nghiệm phân biệt x1 = 1 (tm) ; x2 = c/a = 4 (tm)

Vậy phương trình đã cho có hai nghiệm x1 = 1 ; x2 = 4

a: \(2x^2-3x-5=0\)

=>\(2x^2-5x+2x-5=0\)

=>\(\left(2x^2-5x\right)+\left(2x-5\right)=0\)

=>\(x\left(2x-5\right)+\left(2x-5\right)=0\)

=>\(\left(2x-5\right)\left(x+1\right)=0\)

=>\(\left[{}\begin{matrix}2x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-1\end{matrix}\right.\)

vậy: \(S=\left\{\dfrac{5}{2};-1\right\}\)

b: Gọi giá tiền của mỗi cây bút bi xanh loại A và mỗi cây bút chì loại 2B lần lượt là a(đồng) và b(đồng)

(Điều kiện: a>0 và b>0)

Số tiền phải trả khi mua 5 cây bút bi xanh loại A là:

\(5\cdot a\left(đồng\right)\)

Số tiền phải trả khi mua 3 cây bút chì loại 2B là:

\(3\cdot b\left(đông\right)\)

Số tiền phải trả khi mua 2 cây bút bi xanh loại A là:

\(2\cdot a\left(đồng\right)\)

Số tiền phải trả khi mua 4 cây bút chì loại 2B là:

\(4\cdot b\left(đồng\right)\)

Khi mua 5 cây bút bi xanh loại A và 3 cây bút chì loại 2B thì phải trả 38500 đồng nên ta có: 5a+3b=38500(1)

Khi mua 2 cây bút bi xanh loại A và 4 cây bút chì loại 2B thì phải trả 28000 đồng nên ta có: 2a+4b=28000(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}5a+3b=38500\\2a+4b=28000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5a+3b=38500\\a+2b=14000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+3b=38500\\5a+10b=70000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-7b=-31500\\a+2b=14000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4500\\a=14000-2b=14000-2\cdot4500=5000\end{matrix}\right.\left(nhận\right)\)

vậy: Giá tiền của mỗi cây bút bi xanh loại A là 5000 đồng

Giá tiền của mỗi cây bút chì loại 2B là 4500 đồng

16 tháng 5 2021

Gọi số học sinh dự tuyển của trường AA là xx (học sinh) (xN;x<560x∈N∗;x<560)

Số học sinh dự tuyển của trường BB là yy (học sinh) (yN;y<560y∈N∗;y<560)

Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: x+y=750x+y=750     (1)

Số học sinh trúng tuyển của trường AA là: 80%.x=45x80%.x=45x (học sinh)

Số học sinh trúng tuyển của trường BB là: 70%.y=710y70%.y=710y (học sinh)

Vì tổng số học sinh trúng tuyển của cả hai trường là 560560 học sinh nên ta có phương trình

45x+710y=56045x+710y=560

8x+7y=5600⇔8x+7y=5600    (2)

Từ (1) và (2) ta có hệ phương trình

{x+y=7508x+7y=5600{x+y=7508x+7y=5600

{7x+7y=52508x+7y=5600⇔{7x+7y=52508x+7y=5600

{y=400(tm)x=350(tm)⇔{y=400(tm)x=350(tm)

Vậy số học sinh dự thi của trường AA là 350350 học sinh

Số học sinh dự thi của trường BB là 400400 học sinh.

16 tháng 5 2021
Gọi số HS dự tuyển là x HS ( 0
16 tháng 5 2021

1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )

Vận tốc của xe 2 = x - 10 (km/h)

Thời gian xe 1 đi hết quãng đường AB = 160/x (km)

Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)

Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :

\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)

<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)

=> 4x( x - 10 ) = 8000

<=> x2 - 10x - 2000 = 0 (*)

Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100

Δ > 0 nên (*) có hai nghiệm phân biệt : 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)

Vậy vận tốc của xe 2 là 40km/h

4 tháng 6 2021

gọi vận tốc của xe thứ hai là x (km/h)

⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)

      vận tốc của xe thứ nhất là x+10 (km/h) (x>0)

⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)

vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:

\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)

\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0

                                                             Δ=40\(^2\)-4.4.(-8000)=129600>0

⇒pt có hai nghiệm pb

       x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)

      x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)

vậy vận tốc của xe thứ hai là 40 km/h

 

 

18 tháng 3 2021

a, Với \(x>0;x\ne4;x\ne9\)

\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)

b, Ta có : A = -2 hay 

\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)

\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)

\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)

bình phương 2 vế ta có : 

\(x=\left(2x+3\right)^2=4x^2+12x+9\)

\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)

\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)              

\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)

\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)

\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{4x}{\sqrt{x}-3}\)

20 tháng 6 2017

\(\text{Δ}=\left(m-1\right)^2-\left(m^2+2m-8\right)\)

\(=m^2-2m+1-m^2-2m+8\)

\(=-4m+9\)

Để pt có 2 nghiệm phân biệt thì Δ>0

\(Hay:-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

\(\Leftrightarrow m< 2,25\)

Vậy để pt có 2 nghiệm phân biệt thì m<2,25

20 tháng 6 2017

Đề này thuộc dạng khó !!!! HSG đâu mình nhờ xíu !!!