K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

mình ko biết làm vì năm nay mình mới lên lớp 6 nhé

mong bạn thông cảm

28 tháng 5 2016

a = 2010+1 / 2010-1                                                                             b = 2010 -1 / 2010-3

= 2010-1+2 / 2010-1                                                                             = 2010-3+2 / 2010-3

= 2010-1 / 2010-1 + 2 / 2010-1                                                              = 2010-3 / 2010-3 + 2 / 2010-3

= 1 + 2 / 2010-1                                                                                  = 1 + 2 / 2010-3

Vì 2010-1 > 2010-3 nên 2 / 2010-1 < 2 / 2010-3

=>a <b

16 tháng 4 2017

Ta có:

\(A=\frac{20^{10}+1}{20^{10}-1}=1\)

\(B=\frac{20^{10}-1}{20^{10}-3}=1\)

Vậy A và B bằng nhau

16 tháng 4 2017

Tính A và B rồi ta so sánh:

A = \(\frac{20^{10}+1}{20^{10}-1}\) = \(1\)

B = \(\frac{20^{10}-1}{20^{10}-3}\) = \(1\)

Mà \(1\) = \(1\)

Nên: A = B

10 tháng 5 2018

ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A

vậy B>A

nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy

27 tháng 4 2017

Vì \(20^{10}-1>20^{10}-3\)

\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)

vậy \(A< B\)

20 tháng 4 2015

A = \(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

B = \(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{2^{10}-1}<\frac{2}{2^{10}-3}\)=> \(1+\frac{2}{2^{10}-1}<1+\frac{2}{2^{10}-3}\)

Vậy A < B

22 tháng 4 2016

ta có:\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

vì 2010-1>2010-3

=>\(\frac{2}{20^{10}-1}<\frac{2}{20^{10}-3}\)

\(\Rightarrow1+\frac{2}{20^{10}-1}<1+\frac{2}{20^{10}-3}\)

=>A<B

22 tháng 4 2016

Theo đề, ta có:

           \(B=\frac{20^{10}-1}{20^{10}-3}<\frac{20^{10}-1+2}{20^{10}-3+2}\)

Suy ra  \(B<\frac{20^{10}+1}{20^{10}-1}\)

Mà \(A=\frac{20^{10}+1}{20^{10}-1}\)

Nên ​​​B < A 

24 tháng 7 2020

a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)

Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)

Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=> 10A > 10B 

=> A > B

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\) 

=> A < B

24 tháng 7 2020

Cảm ơn bạn rất nhiều nha

29 tháng 4 2017

\(20^{10}-1>20^{10}-3\)

\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-1+2}=\frac{20^{10}+1}{20^{10}-1}=A\)

\(\Rightarrow A< B\)
 

29 tháng 4 2017

Ta có : \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)

           \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)

\(A=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Do : \(20^{10}-1>20^{10}-3\)

\(\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

Vậy : \(A< B\)

A = \(\frac{20^{10}+1}{20^{10}-1}=1\)    B = \(\frac{20^{10}-1}{20^{10}-3}=1\)

Nên A = B

14 tháng 5 2017

\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\Rightarrow A< B\)