K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Áp dụng bất đẳng thức Schwartz , ta có : 

\(\left(1.\sqrt{1+x}+1.\sqrt{1+y}\right)^2\le\left(1^2+1^2\right)\left(1+x+1+y\right)\)

\(\Leftrightarrow4\left(1+a\right)\le2.\left(x+y+2\right)\)

\(\Leftrightarrow x+y+2\ge2a+2\)

\(\Rightarrow x+y\ge2a\left(ĐPCM\right)\)

20 tháng 7 2019

\(\left(2\sqrt{1+a}\right)^2=4\left(1+a\right)=\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)

\(\Leftrightarrow\)\(x+y\ge2a\)

20 tháng 7 2019

Áp dụng bđt Bunyakovsky: \(\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)

\(\Rightarrow4\left(a+1\right)\le2\left(x+y+2\right)\Leftrightarrow4a\le2\left(x+y\right)\Leftrightarrow x+y\ge2a\)

23 tháng 2 2018

BĐT C-S: 

\(\left(2\sqrt{a+1}\right)^2=\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\)

\(\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)

Hay \(4\left(a+1\right)\le2\left(x+y+2\right)\)

\(\Leftrightarrow2a+2\le x+y+2\Leftrightarrow2a\le x+y\) *DDungs*

20 tháng 2 2016

Cho kq luôn :X=1

NV
25 tháng 11 2019

a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:

\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)

\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)

b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)

Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)

\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 11 2019

Căn bậc hai. Căn bậc ba

2 tháng 6 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)

Tương tự cho 2 BĐT trên ta có:

\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)

Xảy ra khi \(x=y=z\)