K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

gọi số thứ nhất là x ( x<30) 
số thứ hai là 30-x 
theo đề ta có pt 
x^2 + ( 30-x)^2 = 468 
<=> x^2 + 900 - 60x + x^2 = 468 
<=> 2(x^2) - 60x + 432 = 0 
<=> x^2 - 30x + 216 =0 
giải phương trình ta được x= 18 hoặc x =12 

Đó là kết quả luôn đó nha bạn

25 tháng 5 2016

gọi số thứ nhất là x ( x<30) 
số thứ hai là 30-x 
theo đề ta có pt 
x^2 + ( 30-x)^2 = 468 
<=> x^2 + 900 - 60x + x^2 = 468 
<=> 2(x^2) - 60x + 432 = 0 
<=> x^2 - 30x + 216 =0 
giải phương trình ta được x= 18 hoặc x =12 

8 tháng 6 2021

gọi 2 số đó là a và b \(\left(a,b>0\right)\)

Theo đề: \(\left\{{}\begin{matrix}a+b=19\left(1\right)\\a^2+b^2=185\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow\left(a+b\right)^2=19^2=361\left(3\right)\)

Lấy \(\left(3\right)-\left(2\right)\Rightarrow2ab=176\Rightarrow ab=88\left(4\right)\)

Từ (1) và (4) \(\Rightarrow a,b\) là nghiệm của pt \(x^2-19x+88=0\)

\(\Rightarrow\left(x-11\right)\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=8\\b=11\end{matrix}\right.\\\left\{{}\begin{matrix}a=11\\b=8\end{matrix}\right.\end{matrix}\right.\)

Vậy 2 số cần tìm là 8 và 11

21 tháng 10 2019

Gọi hai số cần tìm là x, y.

Theo đề bài ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra x, y là nghiệm của phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hai số cần tìm là 12 và 8

26 tháng 5 2015

so thu nhat : -5

so thu 2: 15

1 tháng 6 2018

Số thứ nhất : -5

Số thứ hai : 15 

     Đ/S : ...  

              ....

Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)
Theo giả thiết, ta có
a + b = 19 và a^2 + b^2 = 185
=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88
=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)
(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11
=> (a,b) = (11;8)

8 tháng 6 2021

gọi x là số tự nhiên thứ nhất , y là số tự nhiên thứ hai . (x,y > 0)

tổng của chúng bằng 19

=> x + y = 19

<=> x = 19 - y

tổng các bình phương của chúng bằng 185

=> x^2 + y^2 = 185

<=> (19 - y)^2 + y^2 = 185

<=> 361 - 38y + y^2 + y^2= 185

<=> 2y^2 - 38y + 176 = 0

<=> y = 8 hoặc y = 11

y = 8 => x = 19 - 8 = 11

y = 11 => x = 19 - 11 = 8

vậy hai số tự nhiên đó là 8 và 11

NV
17 tháng 4 2021

Gọi các số hạng của CSN là \(u_1;u_1q;u_1q^2;u_1q^3\)

\(\Rightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2+q^3\right)=15\\u_1^2\left(1+q^2+q^4+q^6\right)=85\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1^2\left(q+1\right)^2\left(q^2+1\right)^2=225\\u_1^2\left(q^2+1\right)\left(q^4+1\right)=85\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(q+1\right)^2\left(q^2+1\right)}{q^4+1}=\dfrac{45}{17}\)

\(\Leftrightarrow14q^4-17q^3-17q^2-17q+14=0\)

Với \(q=0\) ko phải nghiệm, với \(q\ne0\)

\(\Leftrightarrow14\left(q^2+\dfrac{1}{q^2}\right)-17\left(q+\dfrac{1}{q}\right)-17=0\)

\(\Leftrightarrow14\left(q+\dfrac{1}{q}\right)^2-17\left(q+\dfrac{1}{q}\right)-45=0\Rightarrow\left[{}\begin{matrix}q+\dfrac{1}{q}=-\dfrac{9}{7}\\q+\dfrac{1}{q}=\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}7q^2+9q+7=0\\2q^2-5q+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow u_1=\dfrac{15}{1+q+q^2+q^3}=...\)

31 tháng 10 2023

đoạn cuối là sao vậy ạ

26 tháng 5 2015

trong câu hỏi tương tự a có dạng như vậy

20 tháng 1 2018

Chọn B

Gọi ba số hạng liên tiếp của cấp số cộng là a - 2x; a ; a+2x với công sai d=2x.

Theo giả thiết ta có:

a − 2 x + a + a + 2 x = − 9 ( a - 2 x ) 2 + a 2 + a + 2 x 2 = 29 ⇔ 3 a = − 9 3 a 2 + ​ 8 x 2 = 29 ⇔ a = − 3 8 x 2 = 2 ⇔ a = − 3 x = ± 1 2

với 

x =    1 2     ⇒ u 1 =    a − 2 x =    − 3 − 2.    1 2 =   − 4

với 

x =    − 1 2     ⇒ u 1 =    a − 2 x =    − 3 − 2.    − 1 2 =   − 2

 

Vậy số hạng đầu tiên là -4 hoặc -2 

29 tháng 4 2017

Chọn đáp án B