K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

\(\dfrac{2}{5.10}+\dfrac{2}{10.15}+...+\dfrac{2}{995.1000}\\ =2\left(\dfrac{1}{5.10}+\dfrac{1}{10.15}+...+\dfrac{1}{995.1000}\right)\\ =\dfrac{2}{5}\left(\dfrac{5}{5.10}+\dfrac{5}{10.15}+...+\dfrac{5}{995.1000}\right)\\ =\dfrac{2}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{995}-\dfrac{1}{1000}\right)\\ =\dfrac{2}{5}\left(\dfrac{1}{5}-\dfrac{1}{1000}\right)\)

\(=\dfrac{2}{5}.\dfrac{199}{1000}\\ =\dfrac{199}{2500}\)

20 tháng 5 2017

\(A=\frac{1}{5}x\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{10}+\frac{1}{995.1000}\right)\)

\(A=\frac{1}{5}x\left(\frac{1}{5}-\frac{1}{1000}\right)\)

\(A=\frac{1}{5}x\frac{199}{1000}\)

\(A=\frac{199}{5000}\)

Nếu muốn thì thử lại :

20 tháng 5 2017

\(=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+..+\frac{1}{995}-\frac{1}{1000}\right)...\)

\(=\frac{1}{5}\left(1-\frac{1}{1000}\right)=\frac{1}{5}\cdot\frac{995}{1000}\)

tự tính nốt nha

6 tháng 7 2016

\(\frac{2}{5.10}+\frac{2}{10.15}+\frac{2}{15.20}+...+\frac{2}{2015.2020}\)

\(=2.\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2015.2020}\right)\)

\(=2.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2015}-\frac{1}{2020}\right)\)

\(=2.\left(\frac{1}{5}-\frac{1}{2020}\right)\)

\(=2.\frac{403}{2020}=\frac{403}{1010}\)

6 tháng 7 2016

\(\frac{2}{5.10}+\frac{2}{10.15}+\frac{2}{15.20}+...+\frac{2}{2015.2020}\)

=\(\frac{2}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+...+\frac{5}{2015.2020}\right)\)

=\(\frac{2}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

=\(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{2020}\right)\)

=\(\frac{2}{5}.\frac{403}{2020}\)

=\(\frac{403}{5005}\)

25 tháng 2 2022

\(\dfrac{1}{5.10}+\dfrac{1}{10.15}+...+\dfrac{1}{395.400}\\ =\dfrac{1}{5}\left(\dfrac{5}{5.10}+\dfrac{5}{10.15}+...+\dfrac{5}{395.400}\right)\\ =\dfrac{1}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{395}-\dfrac{1}{400}\right)\\ =\dfrac{1}{5}\left(\dfrac{1}{5}-\dfrac{1}{400}\right)\\ =\dfrac{1}{5}.\dfrac{79}{400}\\ =\dfrac{79}{2000}\)

25 tháng 2 2022

Cảm ơn

 

11 tháng 3 2017

C=1/5.10+1/10.15+...+1/95.100

   = 5/5.10+5/10.15+...+5/95.100

   = 1/5-1/10+1/10-1/15+...+1/95-1/100

   = 1/5-1/100

   = 19/100

11 tháng 3 2017

\(C=5\times\left(1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..+\frac{1}{95}-\frac{1}{100}\right)\)

\(C=5\times\left(1-\frac{1}{100}\right)\)

\(C=5\times\frac{99}{100}\)

\(C=\frac{99}{20}\)

31 tháng 3 2016

=(5/5-5/10+5/10-5/15+.........+5/2015-5/2020)

=(1/5-1/10+1/10-1/20+.......+1/2015-1/2020)

=1/5-1/2020

=403/2020

ai tích mk mk vs

31 tháng 3 2016

\(\frac{5}{5.10}+\frac{5}{10.15}+.............+\frac{5}{2015.2020}\)

\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..............+\frac{1}{2015}-\frac{1}{2020}\)

\(=\frac{1}{5}-\frac{1}{2020}\)

\(=\frac{403}{2020}\)

8 tháng 8 2018

\(B=\frac{5}{5\cdot10}+\frac{5}{10\cdot15}+...+\frac{5}{95\cdot100}\)

\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

\(B=\frac{1}{5}-\frac{1}{100}\)

\(B=\frac{19}{100}\)

8 tháng 8 2018

\(B=\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)

\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

\(B=\frac{1}{5}-\frac{1}{100}\)

\(B=\frac{19}{100}\)

2 tháng 9 2019

\(1-\frac{1}{5\cdot10}-\frac{1}{10\cdot15}-\frac{1}{15\cdot20}-...-\frac{1}{95\cdot100}\)

\(=1-\left(\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+...+\frac{1}{95\cdot100}\right)\)

\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-...+\frac{1}{95}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)=1-\frac{19}{500}=\frac{481}{500}\)

16 tháng 6 2018

Bài 1:

a) \(B=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{61.63}-\frac{2}{63.65}\)

\(B=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{61.63}+\frac{2}{63.65}\right)\)

\(B=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{61}-\frac{1}{63}+\frac{1}{63}-\frac{1}{65}\right)\)

\(B=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(B=1-\frac{62}{195}\)

\(B=\frac{133}{195}\)

b) \(C=1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)

\(C=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)

\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)

\(C=1-\frac{1}{5}.\frac{19}{100}\)

\(C=1-\frac{19}{500}\)

\(C=\frac{481}{500}\)

bài 2 thì bn lm như bn Phùng Minh Quân nha!

16 tháng 6 2018

Câu 1 : mình ko hiểu đề bài cho lắm ~.~ 

Câu 2 : 

Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\)

\(\Rightarrow\)\(A=10+\left|\frac{1}{2}-x\right|\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|\frac{1}{2}-x\right|=0\)

\(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(10\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~