nếu 1/x + 1/y + 1/z = 1/(x + y + z) thì 1/x^2016 + 1/y^2016 + 1/z^2016 =1/(x^2016+y^2016+z^2016)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y=y/z=z/x
=> x*z = 2*y = x*y = 2*z
Ta có :
x*z = x*y
=> z=y
Ta có :
x*z = 2*y = y*y
Mà y = z (cmt)
=> x*z = y*z
=>x=y
Mà y = z (cmt)
=> x=y=z
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)
\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)
\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\) hoặc y+z=0
Do đó ta có B=0
\(\left(\sqrt{x-2016}-2\right)^2+\left(\sqrt{y-2016}-2\right)^2+\left(\sqrt{z-2016}-2\right)=0..\)
=> x=y=z = 2020
\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)= \(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\) = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)
=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)
Thêm điều kiện : x,y,z khác 0 và x+y+z khác 0
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)\(\Rightarrow\) \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left(\frac{xz+xy+yz+z^2}{xyz\left(x+y+z\right)}\right)=0\)\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
Do đó : x + y = 0 hoặc x + z = 0 hoặc y + z = 0
Từ đó thay x,y,z vào từng trường hợp rồi suy ra đpcm
1/x+1/y+1/z=1/xyz
1/x+1/y=1/xyz-1/z
(x+y)(xy+yz+z^2)=0
(x+y)(x+z)(y+z)=0
x+y=0 suy ra x=-y
x+z=o suy ra z=x
z+y=0 suy ra y=-z
voi x=-y suy ra 1/x^2016+1/y^2016+1/z^2016=1/-y^2016+1/y^2016+1/z^2016=1/z^2016 (1)
1/x^2016+y^2016+z^2016=1/-y^2016+y^2016+z^2016 =1/z^2016 (2)
tu 1 va 2 suy ra dpcm
tinh gum minh cai chc chan bai nay dung