K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

Có: 1-a, 1-b, 1-c ≥ 0 

=> (1-a)(1-b)(1-c) = 1 - (a+b+c) + ab+bc+ca - abc \(\ge\) 0 

1 \(\ge\) a+b+c - ab - bc - ca + abc (*) 

mặt khác cũng từ gt: 0\(\le\)≤ a, b, c \(\le\) 1 => b \(\ge\) b2 ; c \(\ge\) c3 ; abc \(\ge\) 0 

(*) => 1 \(\ge\) a + b2 + c3 - ab-bc-ca (đpcm)  

Dấu "=" xảy ra khi có 1 số = 0 và 1 số = 1

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

NV
25 tháng 3 2022

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath

Bài 4: B

Bài 5: 

a: {3;5};{3;7};{5;7};{3;5;7};{3};{5};{7};\(\varnothing\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:

\(A\setminus B = \left\{0\right\}\cup (10;+\infty)\)

A=[10;+\(\infty\))

B=(0;10]

A\B=(10;+\(\infty\))

A=(0;+\(\infty\))

B=[-3;15)

\(A\cup B=[-3;+\infty)\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:

\(A\cup B=[3;+\infty)\)

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) A là tập hợp các số nguyên có giá trị tuyệt đối nhỏ hơn 5.

\(A = \{  - 4; - 3; - 2; - 1;0;1;2;3;4\} \)

b) B là tập hợp các nghiệm thực của phương trình \(2{x^2} - x - 1 = 0.\)

\(B = \{ 1; - \frac{1}{2}\} \)

c) C là tập hợp các số tự nhiên có hai chữ số.

\(C = \{ 10;11;12;13;...;99\} \)