a) a3+b3=(a+b)3-3ab(a+b)
giải rõ dễ hiểu nka các bạn! cám ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
a)các ước nguyên tố của a : 3 và 5
b) Ta có 32.52=9.25=225
=>BCNN (9,25)=225 (Vì 9,25 nguyên tố cùng nhau )
=>BCNN (9,25)=Ư (225)=(1;3;5;9,25;45;75;225
=> Kết luận (dễ)
A=(-a - b + c) - (-a-b-c)
A= -a-b+c - (-a)+b+c
A= -a+(-b)+c + a+b+c
A= (-a + a) + (-b+b) + c+c
A=0+0 +c +c
B= -1 + 3 - 5 + 7-9 + 11 -......- 2017+ 2019
B= (-1)+3+(-5)+7+(-9)+11+......+(-2017)+2019
B= [(-1)+3]+[(-5)+7]+[(-9)+11]+......+[(-2017)+2019]
B= (-2) + (-2) + (-2) +.......+ (-2)
Tổng B có số số hạng là:
[ 2019 - 1]:2+1=1010(số hạng)
Tổng B số cặp là:
1010:2=505(cặp)
=>B= (-2) + (-2) + (-2) +.......+ (-2) (505 số hạng)
B= (-2) . 505
B= -1010
Vậy B = -1010
a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)
Do a;b;c là 3 cạnh của 1 tam giác
\(\Rightarrow a< b+c\Rightarrow2a< a+b+c=6\Rightarrow a< 3\)
Chứng minh tương tự ta được: \(b< 3;c< 3\)
\(\Rightarrow3-a>0;3-b>0,3-c>0\)
Do đó:
\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\dfrac{3-a+3-b+3-c}{3}\right)^3=\left(\dfrac{9-\left(a+b+c\right)}{3}\right)^3=1\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27\le1\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27\le1\)
\(\Leftrightarrow abc\ge3\left(ab+bc+ca\right)-28\)
\(\Leftrightarrow2abc\ge6\left(ab+bc+ca\right)-56\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-56\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56=52\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=2\)
BĐT vế phải:
Vẫn từ chứng minh trên, \(3-a>0;3-b>0,3-c>0\)
\(\Rightarrow\left(3-a\right)\left(3-b\right)\left(3-c\right)>0\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27>0\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27>0\)
\(\Leftrightarrow abc< 3\left(ab+bc+ca\right)-27\)
\(\Leftrightarrow2abc< 6\left(ab+bc+ca\right)-54\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-54\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a+b+c\right)^2-54=54\) (đpcm)
Ta có : a^3 + b^3 = (a + b)(a^2 - ab + b^2) = (a + b)(a^2 + 2ab + b^2 - 3ab)
= (a + b)[(a + b)^2 - 3ab] = (a + b)^3 - 3ab(a + b)
đề yêu cầu j