K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016
  1. to doan la 4 la dung nhat
28 tháng 2 2017

cách làm thế nào

6 tháng 8 2020

a/ Nửa chu vi HCN là 60:2=30 cm

 \(\frac{AB}{BC}=\frac{3}{2}\) nên \(AB=\frac{30}{3+2}x3=18cm\Rightarrow BC=30-18=12cm\)

\(\Rightarrow S_{ABCD}=ABxCD=18x12=216cm^2\)

b/ Nối A với C. Xét tg ABC và tg ABE có chung đáy AB và đường cao hạ từ C xuống AB = đường cao hạ từ E xuống AB nên

\(S_{ABC}=S_{ABE}\) mà 2 tg này có chung phần diện tích là \(S_{ABM}\Rightarrow S_{MBE}=S_{AMC}\) (1)

Xét tg AMC và tg MCD có chung đáy MC và đường cao hạ từ A xuống BC = đường cao hạ từ D xuống BC nên

\(S_{AMC}=S_{MCD}\) (2)

Từ (1) và (2) \(\Rightarrow S_{MBE}=S_{MCD}\)

6 tháng 8 2020

Câu c

Xét tg AMB và tg AMC có chung đường cao hạ từ A xuống BC nên

\(\frac{S_{AMB}}{S_{AMC}}=\frac{MB}{MC}=\frac{2xMC}{MC}=2\)

Hai tg trên lại có chung đáy AM nên 

S(AMB) / S(AMC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE = 2

Xét tg ABE và tg ACE có chung cạnh đáy AE nên 

S(ABE) / S(ACE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE = 2 => S(ABE)=2xS(ACE)

Ta có S(ACD) = S(ABC) (Nửa diện tích HCN) mà S(ABC) = S(ABE) => S(ABE)=S(ACD) = 2xS(ACE)

\(\frac{S_{ABE}}{S_{ADE}}=\frac{S_{ABE}}{S_{ACD}+S_{ACE}}=\frac{2xS_{ACE}}{2xS_{ACE}+S_{ACE}}=\frac{2}{3}\)

Xét tg ABE và tg ADE có chung đáy AE nên

S(ABE) / S(ADE) = đường cao hạ từ B xuống AE / đường cao hạ từ D xuống AE = 2/3

Xét tg AOB và tg AOD có chung đáy OA nên

S(AOB) / S(AOD) = đường cao hạ từ B xuống AE / đường cao hạ từ D xuống AE = 2/3

Hai tam giác trên lại có chung đường cao hạ từ A xuống BD nên

\(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}=\frac{2}{3}\)

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)

9 tháng 8 2016

cac bn giup minh di

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔBCD có

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

c: Xét ΔCBD có

CA,BE là đường trung tuyến

CA cắt BE tại I

Do đó: DI đi qua trung điểm của BC