K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

CMR: A là lũy thừa của 2 với A= 4 + 22 + 23+ ......+ 250

GIẢI

2A= 8+ 23+ 2+........+ 221

2A - A = 8+ 23+24+.......+ 221 - 4 - 22+ 23 +...............+ 220

A= 221                                                Vậy A là lũy thừa của 2

10 tháng 3 2019

Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

2 + 4 + 2 3 + 2 4 + . . . + 2 51  – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

= 6 + 2 3 + 2 4 + . . . + 2 51  – ( 7 + 2 3 + . . . + 2 50 ) =  2 51 - 1

Suy ra : A + 1 =  2 51

Vậy A+1 là một lũy thừa của 2

2 tháng 1 2020

26 tháng 10 2023

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...

11 tháng 1

Câu 3:

\(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\) 

Mà: \(2A+3=3^N\)

\(\Rightarrow3^{101}-3+3=3^N\)

\(\Rightarrow3^{101}=3^N\)

\(\Rightarrow N=101\)

Vậy: ... 

Câu 1:

\(A=4+2^2+...+2^{20}\)

Đặt \(B=2^2+2^3+...+2^{20}\)

=>\(2B=2^3+2^4+...+2^{21}\)

=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)

=>\(B=2^{21}-4\)

=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2

Câu 6:

Đặt A=1+2+3+...+n

Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)

=>\(A=\dfrac{n\left(n+1\right)}{2}\)

=>\(A⋮n+1\)

Câu 5:

\(A=5+5^2+...+5^8\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

27 tháng 11 2019

Em kiểm tra lại đề bài nhé.

c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath

b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath

a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$(2300-22):1+1=2279$

Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2. 

13 tháng 12 2021

THI TỰ LÀM

13 tháng 12 2021

=(( thi với thằng em 

 

10 tháng 11 2021

Đổi 4 thành 2 mũ 2

 

Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r

10 tháng 11 2021

Dễ:đổi 4=22

B=22+23+24+...+220

ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)

                    = 221-22

Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá

 

 

20 tháng 12 2017

Ta có : A =  4 + 2^2 + 2^3 + 2^4 + ... + 2^20 

2A = 8 + 23 + 24 + 25 + ... + 221

suy ra 2A - A = ( 8 + 23 + 24 + 25 + ... + 221 ) - ( 4 + 2^2 + 2^3 + 2^4 + ... + 2^20  )

A = 221 + 8 - 4 - 22 = 221

Vậy A = 221 ( đpcm )

5 tháng 12 2018

ta có : A = 4 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 20

2A = 8 + 23+24+25+......+221

suy ra 2A - A = ( 8 + 23 + 24 +  25+......+ 221 )  - ( 4 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 +....+2 ^ 20 )

A = 221 + 8 - 4 - 22  = 221