Tìm tổng sau:A=1.2+2.3+3.4+...+2014.2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
Đặt S = 1.2 + 2.3 + 3.4 + ... + 2013.2014
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2013.2014.3
Mà :
1.2.3 = 1.2.3
2.3.3 = 2.3.4 - 2.3.1
3.4.3 = 3.4.5 - 3.4.2
...................................
...................................
2012.2013.3 = 2012.2013.2014 - 2012.2013.2011
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012
Cộng tất cả, vế theo vế ---> 3S = 2013.2014.2015
---> S = 2013.2014.2015 / 3 = 2723058910
A=1.2+2.3+3.4+4.5+...+2014.2015
=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2014.2015.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+2014.2015.(2016-2013)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2014.2015.2016-2013.2014.2015
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+(3.4.5-3.4.5)+(4.5.6-4.5.6)+...+(2013.2014.2015-2013.2014.2015)+0.1.2+2014.2015.2016
=0+2014.2015.2016
=>A=\(\frac{2014.2015.2016}{3}\)
Đặt A = 1 + 2 + 3 + 4 + ....... + 2014
Số các số hạng của A là:
2014 - 1 + 1 = 2014 (số)
A = 2014.(2014 + 1):2 = 2029105
Đặt B = 1.2 + 2.3 + 3. 4 + .....+ 2014.2015
3B = 1.2.3 + 2.3.3 + .3.4.3 + ......... + 2014.2015
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + .......... + 2014.2015.(2016 - 2013)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ........+2014.2015.2016 - 2013.2014.2015
3B = 2014 . 2015 .2016 = 8181351360
B = 8181351360 : 3
B = 2727117120
Vậy D = A + B = 2029105 + 2727117120 = 2729146225
\(A=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2015.2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2014.2015}\)
\(\Leftrightarrow\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(\Leftrightarrow\frac{1}{4}A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(\Leftrightarrow\frac{1}{4}A=\frac{1}{1}-\frac{1}{2015}\)
\(\Leftrightarrow\frac{1}{4}A=\frac{2014}{2015}\)
\(\Leftrightarrow A=\frac{2014}{2015}\div\frac{1}{4}\)
\(\Leftrightarrow A=\frac{8056}{2015}\)
A=1.2+2.3+....+2014.2015
=>3A=1.2.3+2.3.3+3.4.3+...+2015.2014.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+.....+2014.2015.2016-2013.2014.2015
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+(3.4.5-3.4.5)+....+(2013.2014.2015-2013.2014.2015)+0.1.2+2013.2014.2015
=0+2013.2014.2015
=>A=\(\frac{2013.2014.2015}{3}\)