K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Ta có: \(2.S=2.\left(\frac{1}{1^4+1^2+1}+...+\frac{2011}{2011^4+2011^2+1}\right)\)

Xét hạng tử tống quát: \(\frac{2.n}{n^4+n^2+1}=\frac{2.n}{\left(n^4+2n^2+1\right)-n^2}=\frac{\left(n^2+n+1\right)-\left(n^2-n+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)\(=\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}\)

Từ đó: \(\frac{2.1}{1^4+1^2+1}=\frac{1}{1}-\frac{1}{3}\)

          \(\frac{2.2}{2^4+2^2+1}=\frac{1}{3}-\frac{1}{7}\)

          .....

          \(\frac{2.2011}{2011^4+2011^2+1}=\frac{1}{4042111}-\frac{1}{4046133}\)

Từ đó => 2.S= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{4042111}-\frac{1}{4046133}\)=\(1-\frac{1}{4046133}\)=\(\frac{4046132}{4046133}\)

=> S\(=\frac{2023066}{4046133}\)

15 tháng 2 2017

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2011}\left(1+2+3+...+2011\right)\)

\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{2011}\cdot\frac{2011.2012}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2012}{2}\)

\(=\frac{2+3+4+...+2012}{2}\)

\(=\frac{\frac{2012\cdot2013}{2}-1}{2}=\frac{2025077}{2}\)

8 tháng 4 2017

Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)

B=2012.A

=>A/B=1/2012

8 tháng 4 2017

a/b= 1/2012 nha bạn 

tích

12 tháng 2 2017

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)

12 tháng 2 2016

ủng hộ mình lên 280 điểm với các bạn

4 tháng 1 2016

S = \(1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{2011^2}<1-\frac{1}{2.3}-\frac{1}{3.4}-.....-\frac{1}{2011.2012}\)

Đặt A =  \(-\frac{1}{2.3}-\frac{1}{3.4}-....-\frac{1}{2011.2012}=-\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2011.2012}\right)\)

\(A=-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{2012}\right)=-\left(\frac{1}{2}-\frac{1}{2012}\right)=-\frac{1005}{2012}\)

S = 1 + \(\left(-\frac{1005}{2012}\right)=\frac{1007}{2012}>\frac{1}{2011}\)

=> ĐPCM