Chứng minh rằng: A = 22011969 + 11969220 + 69220119 chia hết cho 102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : |3-x|=3-x nếu 3-x> hoặc =0 hay x> hoặc =3; |3-x|=x-3 nếu 3-x<0 hay x<3
Th1: Với x > hoặc =3 thì ta có:3-x=1-3x=>1-3x+x=3=>1-2x=3=>2x=-2=>x=-1(loại vì không thỏa mãn điều kiện x>3)
Th2: với x<3 thì ta có: x-3=1-3x=>x-1+3x=3=>4x=4=>x=1(thỏa mãn điều kiện x<3)
vậy x=1
Ta có :
\(8^{102}-2^{102}\)
\(=\left(8^4\right)^{25}.8^2-\left(2^4\right)^{25}.2^2\)
\(=\left(...6\right)^{25}.64-16^{25}.4\)
\(=\left(...6\right)^{25}.64-\left(...6\right)^{25}.4\)
\(=\left(...6\right).64-\left(...6\right).4\)
\(=\left(...4\right)-\left(...4\right)\)
\(=\left(...0\right)⋮10\)
Vậy \(8^{102}-2^{102}⋮10\rightarrowđpcm\)
Ta có: \(8^{102}-2^{102}\)
\(=2^{102}\cdot4^{102}-2^{102}\)
\(=2^{102}\cdot\left(4^{102}-1\right)\)
Vì 4 mũ chẵn có tận cùng là 6
\(\Rightarrow4^{102}\) có tận cùng là 6
\(\Rightarrow\left(4^{102}-1\right)\) có tận cùng là 5
\(\Rightarrow\left(4^{102}-1\right)⋮5\)
mà \(2^{102}⋮2\)
\(\Rightarrow2^{102}\cdot\left(4^{102}-1\right)⋮2;5\)
\(\Rightarrow2^{102}\cdot\left(4^{102}-1\right)⋮10\)
\(\Rightarrow8^{102}-2^{102}⋮10\left(đpcm\right)\)
Ta có:
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)
2.3.4.51=6.4.51
Mà 6 chia het cho 6,suy ra:2.3.4.51 chia hết cho 6
2.3.4.51=2.12.51
Mà 12 chia hết cho 12,suy ra:2.3.4.51 chia hết cho 12
2.3.4.51=2.3.4.17.3
Mà 17 chia hết cho 17,suy ra :2.3.4.51 chia hết cho 17
2.3.4.51=3.4.102
Mà 102 chia hết cho 102,suy ra 2.3.4.51 chia hết cho 102