Cho tam giác ABC . Gọi D là trung điểm của trung truyến AM . Tia BD cắt AC tại E . Chứng minh
a)AE=\(\frac{1}{2}\) EC
b)DE=\(\frac{1}{4}\)BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAE cân tại B
mà BM là phân giác
nên BM vuông góc AE tại M và M là trung điểm của AE
bài 1 làm sao vậy sao ko thấy mấy câu trả lời vậy bạn giúp mình giải bài tập số 1 với cảm ơn nhiều
a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)
b: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
1)
Từ M kẻ MK//DE ,MKcắt AC tại K
Xét tg AMK có:
DE//MK
D là tr.điểm AM
=>E là tr.điểm AK
=>AE=EK=1/2AK
Xét tg BEC có:
BE//MK (do DE//MK)
M là tr.điểm BC (AM là tr.tuyến của tg ABC)
=>K là tr.điểm EC
=>KE=1/2EC
Mà AE=EK (cmt)
=>AE=1/2EC (đpcm)
Qua M kẻ MF // AC , cắt AC tại F
Ta có : {MF//DEAD=DM{MF//DEAD=DM => DE là đường trung bình tam giác AMF => AE = EF (1)
Lại có : {MF//BEBM=MC{MF//BEBM=MC => MF là đường trung bình tam giác BEC => EF = FC (2)
Từ (1) và (2) suy ra AE = EF = FC => đpcm
Qua M kẻ MF // AC , cắt AC tại F
Ta có : {MF//DEAD=DM{MF//DEAD=DM => DE là đường trung bình tam giác AMF => AE = EF (1)
Lại có : {MF//BEBM=MC{MF//BEBM=MC => MF là đường trung bình tam giác BEC => EF = FC (2)
Từ (1) và (2) suy ra AE = EF = FC => đpcm
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
=>BD vuông góc AE tại M và M là trung điểm của AE
c: Xét ΔBAE có
AF,BM là trung tuyến
AF cắt BM tại G
=>G là trọng tâm
=>E,G,K thẳng hàng