cho P=1/2.3/4.5/6.7/8.....9/100
CMR:1/15<P<1/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2 x 3/4 x 5/6 x 7/8 x.....x 79/80
Bởi vì 1/2 x 3/4 x 5./6 x...x79/80 ( tử số < mẫu số )
=> A < 1
Như vậy A sẽ phải lớn hơn 1/9
Cho nên ko thể chứng minh A < 1/9
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{200.201}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)
=\(\frac{1}{2}-\frac{1}{201}\)
=\(\frac{199}{402}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{200.201}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{2}-\frac{1}{201}=\frac{199}{402}\)
\(P>\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{7}{8}\cdot\cdot\cdot\frac{99}{100}\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\right)\)
\(P>\frac{49}{50}>\frac{1}{15}\)
\(P^2<\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{7}{8}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\frac{8}{9}\cdot....\cdot\frac{100}{101}\right)\)
\(P^2<\frac{1}{101}<\frac{1}{10}\)
\(\Rightarrow\frac{1}{15}