Cho đa thức: ax2 + bx + c. CMR: nếu 5a - b + c =0 thì Q(-3) . Q(1) < hoặc = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q(-3)=9x-3b+x ;Q(1)=a+b+c
lấy Q(-3)+Q(1)=10a-2b+2c=2(5a-b+c)=2.0=0(vì 5a-b-c=0)
mà 0=0=)Q(-3)+Q(1)< hoặc =0 =)Q(-3)và Q(1)đối nhau
mà 2 số đối nhau luôn có 1 số âm và 1 số dương
mà số âm. số dương bằng số âm mà số âm luôn bé hơn 0 nên =)Q(-3).Q(1) < hoặc = 0
Ta có:\(P\left(-2\right)=4a-2b+c\)
\(P\left(1\right)=a+b+c\)
Lấy:\(P\left(1\right)+P\left(-2\right)=5a-b+2c=0\)(theo đề bài)
Vì vậy:\(P\left(1\right)=-P\left(-2\right)\)(Hai số đối nhau tổng bằng 0 )
Do đó:\(P\left(-2\right).P\left(1\right)\le0\)( . là dấu nhân nha bn)
\(a=1,b=6,c=1\)
\(5a-b+c=5-6+1=0\)
\(P\left(1\right).P\left(3\right)=\left(1.1^2+6.1+1\right).\left(1.3^2+6.3+1\right)>0?\)
Ta có ; \(Q_{\left(-3\right)}=9a-3b+c\\ Q_{\left(1\right)}=a+b+c\)
Lại có : \(Q_{\left(-3\right)}+Q_{\left(1\right)}=9a-3b+c+a+b+c=10a-2b+2c\\ =2\left(5a-b+c\right)\)
Mà 5a -b + c = 0 \(\Rightarrow Q_{\left(-3\right)}+Q_{\left(1\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}Q_{\left(-3\right)}\ge0\\Q_{\left(1\right)}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}Q_{\left(-3\right)}< 0\\Q_{\left(1\right)}\ge0\end{matrix}\right.\end{matrix}\right.\Rightarrow Q_{\left(-3\right)}\cdot Q_{\left(1\right)}\ge0\)
\(\RightarrowĐpcm\)
a,Q(2) = 4a+2b+c
Q(-1)=a-b+c
Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c
mà 5a+b+2c=0 => Q(2)=-Q(-1)
Nên Q(2).Q(-1)\(\le\)0