Cho tam giác ABC có 3 góc nhọn ,đường cao BE;CF . Gọi H;K lần lượt là chân đường vuông góc hạ từ B đến EF
a) Tứ giác BHKC là hình gì?
b)CM tam giác AEF đồng dạng với tam giác ABC
c) S bhkc = S bfc+S bec
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Nà Ní!!!!!!!!!!!!!!!!!!!!!!!!!!!
tam giác làm sao có 3 góc nhọn dc :p
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔBEC vuông tại E(gt)
nên \(\widehat{EBC}+\widehat{ECB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DBH}+\widehat{ACB}=90^0\)(1)
Ta có: ΔDAC vuông tại D(gt)
nên \(\widehat{DAC}+\widehat{DCA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DAC}+\widehat{ACB}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBH}=\widehat{DAC}\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
\(\widehat{DBH}=\widehat{DAC}\)(cmt)
nên ΔDBH\(\sim\)ΔDAC(g-g)
Suy ra: \(\dfrac{DB}{DA}=\dfrac{DH}{DC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DB\cdot DC=DH\cdot DA\)(đpcm)
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiêp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có
góc DAB=góc DCH
=>ΔDAB đồng dạng vơi ΔDCH
=>DA/DC=DB/DH
=>DA*DH=DB*DC
c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có
góc DHC=góc FHA
=>ΔHDC đồng dạng vơi ΔHFA
=>HD/HF=HC/HA
=>HF*HC=HD*HA
Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HD*HA
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)
Lời giải:
a) Xét tam giác $ABE$ và $ACF$ có:
$\widehat{A}$ chung
$\widehat{AEB}=\widehat{AFC}=90^0$
$\Rightarrow \triangle ABE\sim \triangle ACF$ (g.g)
b)
Xét tam giác $CEB$ và $CDA$ có:
$\widehat{C}$ chung
$\widehat{CEB}=\widehat{CDA}=90^0$
$\Rightarrow \triangle CEB\sim \triangle CDA$ (g.g)
$\Rightarrow \frac{CE}{CD}=\frac{CB}{CA}$
$\Rightarrow CD.CB=CE.CA$
Ta có đpcm.