2/3+1/8:3/4x21/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)
\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-81^{16}\)
\(A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-81\)
\(A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-81^{16}\)
\(A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)-81^{16}\)
\(A=\left(3^{16}-1\right)\left(3^{16}+1\right)-81^{16}\)
\(A=3^{32}-1-81^{16}\)
A = 8.( 32 + 1 ).( 34 + 1 ).( 38 + 1).( 316 + 1 ) - 8116
A = ( 32 - 1).( 32 + 1 ).( 34 + 1 ).( 38 + 1).( 316 + 1 ) - 8116
A = ( 34 - 1 ).( 34 + 1 ).( 38 + 1).( 316 + 1 ) - 8116
A = ( 38 - 1 ).( 38 + 1).( 316 + 1 ) - 8116
A = ( 316 - 1 ).( 316 + 1 ) - 8116
A = ( 332 - 1 ) - 8116
A = -364
\(1+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}\)
\(=\dfrac{5}{4}+\dfrac{1}{8}+\dfrac{1}{16}\)
\(=\dfrac{11}{8}+\dfrac{1}{16}\)
\(=\dfrac{23}{16}\)
______
\(2-\dfrac{1}{8}-\dfrac{1}{12}-\dfrac{1}{16}\)
\(=\dfrac{15}{8}-\dfrac{1}{12}-\dfrac{1}{16}\)
\(=\dfrac{43}{24}-\dfrac{1}{16}\)
\(=\dfrac{83}{48}\)
_________
\(\dfrac{4}{99}\times\dfrac{18}{5}:\dfrac{12}{11}+\dfrac{3}{5}\)
\(=\dfrac{8}{55}:\dfrac{12}{11}+\dfrac{3}{5}\)
\(=\dfrac{8}{55}\times\dfrac{11}{12}+\dfrac{3}{5}\)
\(=\dfrac{2}{15}+\dfrac{3}{5}\)
\(=\dfrac{11}{15}\)
__________
\(\left(1-\dfrac{3}{4}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{3}\right)\)
\(=\dfrac{1}{4}\times\dfrac{4}{3}\times\dfrac{2}{3}\)
\(=\dfrac{4\times2}{4\times3\times3}\)
\(=\dfrac{2}{3\times3}\)
\(=\dfrac{2}{9}\)
\(\dfrac{1}{16}< \dfrac{7}{16}< \dfrac{1}{2}< \dfrac{9}{16}< \dfrac{3}{4}< \dfrac{7}{8}< \dfrac{11}{9}< \dfrac{16}{9}< \dfrac{8}{3}< \dfrac{17}{5}\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
=79/24 nha
tick cho mk vs