K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Cho a,b,c \(\in\)N* và a<b<1.Ta có:\(\frac{a}{b}<\frac{a+c}{b+c}\)

\(\Rightarrow\)a(b+c)<b(a+c)

\(\Rightarrow\)ab+ac<ba+bc

\(\Rightarrow\)ac<bc

11 tháng 5 2016

Tiếp nè:

\(\Rightarrow\)a<b đúng

Mặt khác:\(\frac{1}{2}<\frac{1+1}{2+1}=\frac{2}{3}\)

              \(\frac{3}{4}<\frac{3+1}{4+1}=\frac{4}{5}\)

               \(\frac{199}{200}<\frac{199+1}{200+1}=\frac{200}{201}\)

\(\Rightarrow A<\frac{2}{3}.\frac{4}{5}...........\frac{200}{201}\)

\(\Rightarrow A^2<\frac{1}{2}.\frac{2}{3}.\frac{3}{4}............\frac{199}{200}.\frac{200}{201}\)

\(\Rightarrow A^2<\frac{1}{101}<\frac{1}{100}\)

\(\Rightarrow A<\frac{1}{10}\)

b,Chưa làm được,sorry

31 tháng 7 2015

sr bn, tôi, ấn nhầm nút gửi bài

22 tháng 11 2016

yen tam di an nham van k nhu thuong ma

23 tháng 8 2016

\(A< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{5}{5}=1=B\)

23 tháng 8 2016

a/

\(\frac{2001}{2004}=\frac{2004-3}{2004}=1-\frac{3}{2004}=1-\frac{1}{668}.\)

\(\frac{39}{40}=\frac{40-1}{40}=1-\frac{1}{40}\)

Ta có \(40< 668\Rightarrow\frac{1}{40}>\frac{1}{668}\Rightarrow1-\frac{1}{40}< 1-\frac{1}{668}\Rightarrow\frac{39}{40}< \frac{2001}{2004}\)

b/

\(A< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=1=B\)

23 tháng 4 2016

Ta thấy B=20^10-1/20^10-3 là phân số lớn hơn 1.

Theo tính chất nếu a/b>1 thì a/b > a+n/b+n ( n khác 0 )

Ta có : 20^10-1/20^10-3 > 20^10-1+2/20^10-3+2

          <=> B > 20^10+1/20^10-3 = A

          <=> B > A

          Vậy B > A    

23 tháng 4 2017

A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)

   (Sử dung phương pháp chặn số đầu)

\(\frac{1}{100}\)>\(\frac{1}{101}\)

\(\frac{1}{100}\)>\(\frac{1}{102}\)

           ...

\(\frac{1}{100}\)>\(\frac{1}{200}\)

nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)\(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)

\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)

\(\Rightarrow\)A >\(\frac{3}{4}\)

5 tháng 4 2016

a) a+n/b+n=a/b

vì a+n/b+n rút gọn n ta sẽ đc a/b

b) Nhân A với 10 ta được \(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)

\(10A=\frac{10^{12}-10}{10^{12}-1}\)

\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)

\(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)

Nhân B với 10 rồi giải tương tự như A ta được

\(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)

ta thấy: 1012-1>1011+1\(\Rightarrow\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\) ( vì 2 ps cùng tử ps nào có tử bé hơn thì ps đó lớn hơn)

=>10B>10A

=>B>A