K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Thay các giá trị của x vào đa thức nếu M(x)=0 thì đó là nghiệm của đa thức

11 tháng 5 2016

bai toan dễ nhât ma tui gap;

nghiem cua 1 đa thức la lam cho da thuc do =0

M(x) =0 khi x = 1; .....

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

17 tháng 3 2023

ỏ cảm mơn nhaaaa ! có j giúp típ nha thank kiuuu 

17 tháng 8 2023

Chịu

25 tháng 1 2019

1

37.(43-51)-43.(37-51)

=37.43-37.51-43.37-43.51

=(37.43-43.57)-(37.51-43.51)

=0-(-306)

=306

2

a.(x-1).(2x+2)=0

=>x-1 hoặc 2x+2=0

=>x=1 hoặc 2x=-2

=>x=1 hoặc x=-1

Vậy x=+1

b.(6x-12).(x-3)=0

=>6x-12 hoặc x-3=0

=>6x=12 hoặc x=3

=>x=2 hoặc x=3

Vậy x=2 hoặc x=3

d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)

\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\)

23 tháng 9 2021

sao làm có 1 ý vậy bạn ơi

bucqua

21 tháng 6 2018

Giải:

1) \(\left(x-6\right)\left(x^2+6x+36\right)-\left(x+4\right)^3=\left(x-2\right)^3+\left(x+5\right)\left(x^2-10x+25\right)-\left(2x^3+6x^2\right)\)

\(\Leftrightarrow x^3-216-\left(x^3+12x^2+48x+64\right)=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)

\(\Leftrightarrow x^3-216-x^3-12x^2-48x-64=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)

\(\Leftrightarrow-280-12x^2-48x=-12x^2+12x+117\)

\(\Leftrightarrow-280-48x-12x-117=0\)

\(\Leftrightarrow-397-60x=0\)

\(\Leftrightarrow-60x=397\)

\(\Leftrightarrow x=-\dfrac{397}{60}\)

Vậy ...

2) \(\left(2x+3\right)^3-\left(2x+5\right)\left(4x^2-10x+25\right)=\left(6x-1\right)^2-\left(x-2\right)\left(x^2+2x+4\right)+x^3\)

\(\Leftrightarrow8x^3+36x^2+54x+27-\left(8x^3+125\right)=36x^2-12x+1-\left(x^3-8\right)+x^3\)

\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3-125=36x^2-12x+1-x^3+8+x^3\)

\(\Leftrightarrow54x-98=-12x+9\)

\(\Leftrightarrow54x+12x=9+98\)

\(\Leftrightarrow66x=107\)

\(\Leftrightarrow x=\dfrac{107}{66}\)

Vậy ...

22 tháng 9 2018

* Trả lời:

\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)

\(\Leftrightarrow-3+6x-4-12x=-5x+5\)

\(\Leftrightarrow6x-12x+5x=3+4+5\)

\(\Leftrightarrow x=12\)

\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)

\(\Leftrightarrow6x-15-6+24x=-3x+7\)

\(\Leftrightarrow6x+24x+3x=15+6+7\)

\(\Leftrightarrow33x=28\)

\(\Leftrightarrow x=\dfrac{28}{33}\)

\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)

\(\Leftrightarrow1-3x-6x+12=-4x-5\)

\(\Leftrightarrow-3x-6x+4x=-1-12-5\)

\(\Leftrightarrow-5x=-18\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)

\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)

\(\Leftrightarrow-x-5x=-7\)

\(\Leftrightarrow-6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\)

\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)

\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)

\(\Leftrightarrow-15x+3x=4\)

\(\Leftrightarrow-12x=4\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

6 tháng 12 2017

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=-6\)

6 tháng 12 2017

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=6\)