Tìm X trong phép tính sau: 2965 : X = 3 ( dư 1)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DK
1
DK
1
DL
2
17 tháng 7 2018
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
YN
1
AH
Akai Haruma
Giáo viên
25 tháng 6
Lời giải:
Gọi đa thức ban đầu là $Q(x)$. Khi chia cho $(x-1)(x-2)$ ta được dư là $E(x)$ và dư $ax+b$ với $a,b$ là số thực.
Ta có:
$Q(x)=(x-1)(x-2)E(x)+ax+b$
$Q(1)=a+b=2$
$Q(2)=2a+b=3$
$\Rightarrow a=1; b=1$
Vậy dư trong phép chia $Q(x)$ cho $(x-1)(x-2)$ là $x+1$
NT
0
X=\(\frac{2965-1}{3}\)
X=988
2965/x=3(dư 1) 2965/3=x(dư 1) 2964/3=x x=988 nhớ tờ i cờ ca nhé hihi