K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2021

\(P=\frac{x}{\left(x+2009\right)^2}\left(x\ne-2009\right)\)

Vì \(x\ne-2009\)nên đặt \(x+2009=a\left(a\ne0\right)\)thì \(x=a-2009\). Lúc đó:

\(P=\frac{a-2009}{a^2}=\frac{1}{a}-\frac{2009}{a^2}=-2009\left(\frac{1}{a^2}-\frac{1}{2009a}\right)\)

Lại đặt \(\frac{1}{a}=b\). Lúc đó:

18 tháng 3 2021

\(P=-2009\left(b^2-\frac{1}{2019}.b\right)=-2009\left[\left(b^2-2.b.\frac{1}{4018}+\frac{1}{4018^2}\right)-\frac{1}{4018^2}\right]\)

\(P=-2009\left(b-\frac{1}{4018}\right)^2+\frac{1}{4.2009}\)

Ta có:

\(\left(b-\frac{1}{4018}\right)^2\ge0\forall b\Rightarrow2009\left(b-\frac{1}{4018}\right)^2\ge0\forall b\)\(\Rightarrow-2009\left(b-\frac{1}{4018}\right)^2\le0\forall b\)

\(\Rightarrow-2019\left(b-\frac{1}{4018}\right)^2+\frac{1}{4.2009}\le\frac{1}{4.2009}\forall b\)

\(\Rightarrow P\le\frac{1}{4.2009}=\frac{1}{8036}\)

Dấu bằng xảy ra.

\(\Leftrightarrow b-\frac{1}{4018}=0\Leftrightarrow b=\frac{1}{4018}\Leftrightarrow\frac{1}{a}=\frac{1}{4018}\Leftrightarrow a=4018\Leftrightarrow x+2009=4018\)

\(\Leftrightarrow x=2009\)(thỏa mãn điều kiện đề bài)

Vậy \(maxP=\frac{1}{8036}\Leftrightarrow x=2009\)

15 tháng 3 2016

Lời giải của mình ở đây nha bạn!

 http://olm.vn/hoi-dap/question/424173.html

\(S=\left\{\frac{4023}{2};\frac{4015}{2}\right\}\)

10 tháng 2 2018

a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2

= 2x^2-4xy+2y^2/x^2-xy+y^2

= 2.(x^2-2xy+y^2)/x^2-xy+y^2

= 2.(x-y)^2/x^2-xy+y^2 

>= 0 ( vì x^2-xy+y^2 > 0 )

Dấu "=" xảy ra <=> x-y=0 <=> x=y

Vậy ..........

10 tháng 2 2018

b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x

= (x-1995)^2 + 7980x >= 7980x

=> M < = x/7980x = 1/7980 ( vì x > 0 )

Dấu "=" xảy ra <=> x-1995=0 <=> x=1995

Vậy ...............

25 tháng 3 2017

khó quá đi

Khó quá, ai mà biết được?!

20 tháng 2 2018

Để ý tử và mẫu là hằng đẳng thức

12 tháng 3 2017

đặt 2009-x=a,x-2010=b

suy ra a^2+ab+b^2/a^2-ab+b^2=19/49 

suy ra 49(a^2+ab+b^2)=19(a^2-ab+b^2)

49a^2+49ab+49b^2=19a^2-19ab+19b^2

30a^2+68ab+30b^2=0

30a^2+50ab+18ab+30b^2=0

10a(3a+5b)+6b(3a+5b)=0

(3a+5b)(10a+6b)=0

suy ra 3a+5b=0 hoặc 10a+6b=0 

thế vào lại rồi tìm x 

8 tháng 12 2018

\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)

\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)

\(2008x+201840=2009x\Rightarrow x=201840\)

p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha

8 tháng 12 2018

Boul đẹp trai_tán gái đổ 100% sai 100%

Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840

Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi 

Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !

30 tháng 4 2019

Đặt \(2009-x=t\Rightarrow x-2010=-\left(2009-x\right)-1=-t-1\)

Suy ra:

\(\frac{t^2+t\left(-t-1\right)+\left(-t-1\right)^2}{t^2-t\left(-t-1\right)+\left(-t-1\right)^2}=\frac{19}{49}\)

\(\Leftrightarrow\frac{t^2-t\left(t+1\right)+\left(t+1\right)^2}{t^2+t\left(t+1\right)+\left(t+1\right)^2}=\frac{19}{49}\)

\(\Leftrightarrow\frac{t^2-t^2-t+t^2+2t+1}{t^2+t^2+t+t^2+2t+1}=\frac{19}{49}\)

\(\Leftrightarrow\frac{t^2+t+1}{3t^2+3t+1}=\frac{19}{49}\)

\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)

\(\Leftrightarrow8t^2+8t-30=0\)

\(\Leftrightarrow4t^2+4t-15=0\Leftrightarrow4t^2+4t+1=16\)

\(\Leftrightarrow\left(2t+1\right)^2=16\Leftrightarrow\left[{}\begin{matrix}2t+1=-4\\2t+1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2t=-5\\2t=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\frac{5}{2}\\t=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2009-x=-\frac{5}{2}\\2009-x=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4023}{2}\\x=\frac{4015}{2}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{4015}{2};\frac{4023}{2}\right\}\)