K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{18}\right)\times\left(1-\frac{1}{19}\right)\times\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{17}{18}\times\frac{18}{19}\times\frac{19}{20}\)

\(=\frac{1\times2\times3\times...\times17\times18\times19}{2\times3\times4\times...\times18\times19\times20}\)

\(=\frac{1}{20}\)

21 tháng 8 2023

\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)

\(=\dfrac{1}{20}\)

8 tháng 5 2016

\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\) = \(\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+1\)

\(\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{20}\)

=\(20.\left(\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}+\frac{1}{20}\right)\)

=\(20.\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}\right)\)  

Vì tử số gấp 20 lần mẫu số nên phân số này bằng 20

6 tháng 5 2021

bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ

6 tháng 4 2018

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)

Vậy ................

6 tháng 4 2018

Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có : 

\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên : 

\(A>19.\frac{1}{20}=\frac{19}{20}\)

Vậy \(A>\frac{19}{20}\)

Chúc bạn học tốt ~ 

30 tháng 1 2023

\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)

Biến đổi tử số 

\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)

= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)

\(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)

= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)

Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)

\(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)

Vậy A = 20

30 tháng 1 2023

c.ơn nhìu a

22 tháng 12 2017

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

Sau khi lược bỏ,ta còn lại:

\(A=1-\frac{1}{20}=\frac{19}{20}\)

22 tháng 12 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{18.19}+\frac{1}{19.20}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}\)

\(\Rightarrow A=\frac{19}{20}\)

22 tháng 12 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{18}-\frac{1}{19}\)

\(=1-\frac{1}{19}=\frac{18}{19}\)

3 tháng 11 2018

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)(Dùng cộng rồi trừ chính số đó bằng 0)

=\(\frac{1}{2}-\frac{1}{20}\)

=\(\frac{10}{20}-\frac{1}{20}\)( Dùng phương pháp quy đồng)

=\(\frac{9}{20}\)