Cho tam giác ABC vuông tại A có AB = 6cm; Ac = 8cm và đường cao AH.
a)Chứng minh: Tam giác HBA đồng dạng với tam giác ABC
b)Tia phân giác của góc ABC cắt AC tại D và cắt AH tại E. Tính độ dài các đoạn thẳng BC, AH, EH
c)Qua E vẽ đường thẳng song song với AC cắt BC, AB lần lượt tại F và K. Tính độ dài đoạn thẳng AK và diện tích tứ giác AEFD
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)