xác định đa thức P(x) có bậc là 3 biết rằng P(0)=10, P(1)=12, P(2)=4, P(3)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt P(x)=ax3+bx2+cx+d
Thay x=0;1;2;3 vào P(x) ta có:
d=10
a+b+c=2 =>a=2,5; b=−12,5; c=12; d=10
8a+4b+2c=−6
27a+9b+3c=−9
Mình nghĩ phải p(1)=7 chứ bạn
Đặt Q(x)=p(x) - (-3x+10) bạn thử 0;1;2;3 thấy ngay đó là các nghiệm của Q(x) nên p(x)=Q(x)-3x+10
Hoặc bạn có thể giải hệ phương trình 4 ẩn
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
P(x) = ax3 + bx2 + cx + d
P(0) = a . 03 + b . 02 + c . 0 + d = d
=> d = 10
P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + 10
=> a + b + c + 10 = 12
=> a + b + c = 2
P(2) = a . 23 + b . 22 + c . 2 + d = 8a + 4b + 2c + d = 2(4a + 2b + c) + 10
=> 2(4a + 2b + c) + 10 = 4
=> 4a + 2b + c = - 3
mà a + b + c = 2
=> 3a + b = - 5
=> 3a = - b - 5
=> 9a = - 3b - 15
P(3) = a . 33 + b . 32 + c . 3 + d = 27a + 9b + 3c + 10 = 3(9a + 3b + c) + 10
=> 3(9a + 3b + c) + 10 = 1
=> 3(9a + 3b + c) = - 9
=> 9a + 3b + c = - 3
=> - 3b - 15 + 3b + c = - 3
=> c - 15 = - 3
=> c = 12
=> a + b + 12 = 2
=> a + b = - 10
mà 3a + b = - 5
=> 2a = 5
=> a = 2,5
=> 2,5 + b = - 10
=> b = - 12,5
Vậy P(x) = 2,5x3 - 12,5x2 + 12x + 10
AN TRAN DOAN
P(x) = ax3 + bx2 + cx + d
P(0) = a . 03 + b . 02 + c . 0 + d = d
=> d = 10
P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + 10
=> a + b + c + 10 = 12
=> a + b + c = 2
P(2) = a . 23 + b . 22 + c . 2 + d = 8a + 4b + 2c + d = 2(4a + 2b + c) + 10
=> 2(4a + 2b + c) + 10 = 4
=> 4a + 2b + c = - 3
mà a + b + c = 2
=> 3a + b = - 5
=> 3a = - b - 5
=> 9a = - 3b - 15
P(3) = a . 33 + b . 32 + c . 3 + d = 27a + 9b + 3c + 10 = 3(9a + 3b + c) + 10
=> 3(9a + 3b + c) + 10 = 1
=> 3(9a + 3b + c) = - 9
=> 9a + 3b + c = - 3
=> - 3b - 15 + 3b + c = - 3
=> c - 15 = - 3
=> c = 12
=> a + b + 12 = 2
=> a + b = - 10
mà 3a + b = - 5
=> 2a = 5
=> a = 2,5
=> 2,5 + b = - 10
=> b = - 12,5
Vậy P(x) = 2,5x3 - 12,5x2 + 12x + 10