chướng tỏ rằng A=(n+9999 )(n+2014)là một sốchẵn với mọi số nguyên .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(n+9999+n+2014=2n+12013\) luôn là 1 số lẻ
\(\Rightarrow\)Trong 2 số \(n+9999\) và \(n+2014\) luôn có 1 số chẵn và 1 số lẻ
\(\Rightarrow\) Tích của chúng luôn là 1 số chẵn
Gọi d=ƯCLN(2n+3;n+2)
=>2n+3-2n-4 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>n+2/2n+3 là phân số tối giản
*Với n là số lẻ
=>n+4 là số lẽ;n+7 là số chẳn
=>(n+4)(n+7) là số chẳn
*Với n là số chẳn
=>n+4 là số chẳn;n+7 là số lẽ
=>(n+4)(n+7) là số chẳn
=>(n+4)(n+7) là số chẳn với mọi số nguyên n
+ nếu n =2k
=> (n+4)(n+7) = (2k+4)(2k+7) =2(k+2)(2k+7) chia hết cho 2
+ Nếu n=2k+1
=> (n+4)(n+7)= (2k+1+4)(2k+1+7) =2(2k+5)(k+4) chia hết cho 2
Vậy (n+4)(n+7) là một số chẵn
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (
giúp mik với