K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3x^4 + 12 = 0

3(x^4 + 4) = 0

x^4 + 4 = 0

x^4 = -4

mà  \(x^4\ge0\) với mọi x

Vậy đa thức trên vô nghiệm.

8 tháng 5 2016

   3x+12 = 0

= 3x4          = 0 - 12 = -12

=  x4           = -12 :3 = -4

mà -4 \(\ge\) 0 với mọi x

\(\Rightarrow\) đa thức không có nghiệm

a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)

=-2x+3

b: Đặt C(x)=0

=>-2x+3=0

hay x=3/2

10 tháng 5 2022

Cho `f(x)=0`

`=>(x^2-2)(3x^4+6)=0`

   Mà `3x^4+6 > 0 AA x`

`=>x^2=2`

`=>x^2=2`

`=>x=+-\sqrt{2}`

Vậy nghiệm của đa thức `f(x)` là `x=\sqrt{2}` hoặc `x=-\sqrt{2}`

10 tháng 5 2022

cho f(X) = 0

\(=>\left(2x-2\right)\left(3x.4+6\right)=0\)

\(=>\left[{}\begin{matrix}2x-2=0\\12x+6=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=2\\12x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Bài 4: Cho các đa thức: A(x) = 4x3 + x2 – 2x – 3                                      B(x) = -3x4 + 2x -                  C(x) = - 3x4 - x2 - 4x3 a/ Tính A(x) + B(x) b/ Tìm nghiệm của H(x) = C(x)+ A(x) – B(x) Dạng 3: Hình học Bài 1: Cho tam giác ABC cân tại A ; AB = 5 cm; BC = 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác  a/ Tính AH và BG b/ Qua C kẻ đường...
Đọc tiếp

Bài 4: Cho các đa thức: A(x) = 4x3 + x2 – 2x – 3

                                     B(x) = -3x4 + 2x -        

         C(x) = - 3x4 - x2 - 4x3

a/ Tính A(x) + B(x)

b/ Tìm nghiệm của H(x) = C(x)+ A(x) – B(x)

Dạng 3: Hình học

Bài 1: Cho tam giác ABC cân tại A ; AB = 5 cm; BC = 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác 

a/ Tính AH và BG

b/ Qua C kẻ đường thẳng d vuông góc với BC , đường thẳng này cắt BD tại E. Chứng minh AG = CE

c/ Chứng minh EA song song với CG

Bài 2: Cho ABC cân tại A; AM là đường trung tuyến; BI là đường cao. AM cắt BI tại H, CH cắt AB tại D. 

a/ Chứng minh CD AB 

b/ c/m BD = CI 

c/ c/m DI // BC

d/ Tia phân giác của góc ACH cắt AH tại O. Tính số đo góc ADO

Bài 3: Cho ABC vuông tại A, đường phân giác BK. Kẻ KI vuông góc với BC (IBC)

a/ Chứng minh  ABK = IBK

b/ Kẻ đường cao AH của ABC . C/m AI là tia phân giác của góc HAC

c/ Gọi F là giao điểm của AH và BK. C/m AFK cân và AF<KC

d/ Lấy M thuộc tia AH sao cho AM = AC.  C/m IMIF

MỘT SỐ BÀI NÂNG CAO:

Bài 1: Tính giá trị của đa thức sau biết x+y-2 =0

                    M= x3 +x2y – 2x2 – xy – y2 + 3y +x – 1 

Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:

                    (x2 – 9)2 +    + 10

Bài 3:Tìm giá trị nhỏ nhất của biểu thức        A = 

Bài 4:Chứng tỏ rằng đa thức H(x) = 2x2 + 6x + 10 không có nghiệm.

HELP ;-;

0
16 tháng 4 2021

b, Đặt  \(B\left(x\right)=x^2-\dfrac{x}{2}=x\left(x-\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x=0;x=\dfrac{1}{2}\)Vậy nghiệm đa thức B(x) là x = 0 ; x = 1/2 

c, Đặt \(C\left(x\right)=2x^2+4=2\left(x^2+2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\ne0\\x^2=-2\left(voli\right)\end{matrix}\right.\)Vậy đa thức C(x) vô nghiệm 

d, Đặt \(D\left(x\right)=3x^4+7=0\Leftrightarrow x^4=-\dfrac{7}{3}\left(voli\right)\)

Vậy đa thức D(x) vô nghiệm 

3 tháng 5 2022

8x-12=0
8x     =12
  x     =1,5
Vậy nghiệm của đa thức H(x)=1,5

3 tháng 5 2022

\( H(x)= 8x - 12\)

Xét H(x) = 0

=> \(8x-12=0\)

=> \(8x=12\)

=> \(x = \dfrac{3}{2}\)

Vậy \(x = \dfrac{3}{2}\) là nghiệm của H(x) 

30 tháng 3 2023

a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9

  ⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2

b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7

  A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1

c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0

d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0

⇒ H(x) vô nghiệm

13 tháng 4 2019

a)      A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2

= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12

b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4  +  x2 + 2018 > 0 với mọi x

Vậy đa thức A(x) không có nghiệm.

c) Tìm được P(x) = -2x + 3

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)