Tìm 2 chứ số tận cùng của 2^999 Và 3^999( làm theo phương pháp đồng dư)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt hai biểu thức trên là A và B ta có:
b) A = 31989 = 81497.3 có chữ số tận cùng là 1.3 = 3.
a) B = 2999 + 32999 = 16249 . 8 ( có chữ số tận cùng là 8 ) + 81749 . 27 ( có chữ số tận cùng là 7 ). Vậy B có chữ số tận cùng là 5.
2999 = ( 24 )249 + 3 = ( ...6 )249 . 23 = ( ....6) . (....8) = ( ...48)
3999 = (34 )294 + 3 = (....1)249 . 33 = (...1) . ( ....7) = (....7)
2999 = 2996.23
Cách 1: 2996 = (...6).8 = (...8)
cách 2: 2^996 đồng dư với 6 (mod 10)
2^3 đồng dư với 8 (mod 10)
=> 2^996.2^3 đồng dư với 8 (modul 10)
Ta có: 32 ≡ −1(mod10)⇒(32)499.3≡(−1)499.3 ≡ −3(mod10) ⇒ chữ số tận cùng của 3999 là 7 (vì 7 ≡ −3(mod10).
Ta có:
220 − 1= (210 − 1)(210 + 1)
Mà 210 + 1 = 1025⋮5
⇒220 − 1⋮5
⇒21000 − 1⋮5
Do đó: 21000 tận cùng là 26,51,76
Mà 21000⋮4 ⇒21000 tận cùng là 76
⇒2999 tận cùng là 38 hay 88
Vậy 2999 tận cùng là 8.
Xét 3999
Ta có: 320 đồng dư với (...01) (mod 100)
=> (320)49 đồng dư với (...01)49 (mod 100)
=> 3980 đồng dư với (...01) (mod 100)
Xét 319 đồng dư với 67 (mod 100)
=> 3980 . 319 đồng dư với (...01). (...67) (mod 100)
=> 3999 đồng dư với 67 (mod 100)
Vậy 2 chữ số tận cùng của 3999 là 67
Xét 2999
Ta có: 220 đồng dư với 76 (mod 100)
=> (220)49 đồng dư với (...76)49 (mod 100)
=> 2980 đồng dư với (...76) (mod 100)
Ta có: 219 đồng dư với (...88) (mod 100)
=> 2980 . 219 đồng dư với (...76) x (...88) (mod 100)
=> 2999 đồng dư với 88 (mod 100) => 2 chữ số tận cùng của 2999 là 88
thế này thì mình chịu