gọi a,b,c là độ dài ba cạnh môt tam giác . Cho biết : ( a+ b) . ( b +c) . ( c+ a) = 8abc . Chứng minh ; Tam giác đã cho là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c
\(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\); \(c+a\ge\sqrt{ca}\)
Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu " = " xảy ra khi a = b = c => tam giác đó đều
Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0
Áp dụng BĐT co si cho 2 số dương ta có:
a+b\(\ge2\sqrt{ab}\)
b+c\(\ge2\sqrt{bc}\)
a+c\(\ge2\sqrt{ac}\)
=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)
Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c
Mà theo đề bài (a+b)(b+c)(c+a)=8abc
=>a=b=c=>tam giác đó là tam giác đều
a;b;c là 3 cạnh của tam giác => a; b; c dương
Với a; b dương ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)
Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)
=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc
Dấu = xảy ra khi a = b = c
=> tam giác có 3 cạnh là a; b; c là tam giác đều
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)
Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)
Nhân vế với vế:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều
\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)
\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)
Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)
Nên cần chứng minh:
\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.
Vậy ta có đpcm.
Vì a,b,c là độ dài 3 cạnh tam giác => a,b,c là các số dương
Áp dụng BĐT AG-MG , ta có :
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ac}\)
Nhân theo từng vế ta được :
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{ab.bc.ca}=8abc\)
Dấu "=" xảy ra khi a = b = c .
Mà : \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\) ( đề bài )
Vậy tam giác trên là tam giác đều .
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Do đó: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\forall a,c,b\)
Dấu '=' xảy ra khi a=b=c
Vậy: Đây là tam giác đều
a, b, c là độ dài ba cạnh của tam giác đều
nên a, b, c > 0
Ta có: a + b \(\ge\) 2\(\sqrt{ab}\),
b + c \(\ge\) 2\(\sqrt{bc}\),
c + a \(\ge\) 2\(\sqrt{ca}\)
Do đó: (a+b).(b+c).(c+a) \(\ge\) \(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
=> (a+b).(b+c).(c+a) \(\ge\) 8abc
Dấu đẳng thức xảy ra khi a = b = c.
Vì a,b,c là độ dài 2 cạnh của tam giác .Áp dụng BĐT Cô si ta có:
a+b>=2x căn(ab)
b+c>= 2x căn(bc)
c+a>= 2x căn(ac)
Nhân vế theo vế ta được (a+b)(b+c)(c+a) >=8abc
Dấu = xảy ra <=> a=b;b=c;c=a => a=b=c => tam giác đó là tam giác đều