K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15 

 

19 tháng 10 2015

Câu hỏi tương tự có đấy

19 tháng 3 2021

Sai đề baì hả bạn ghi lại đề bài ik

19 tháng 3 2021

đề nó như thế mà bạn
 

9 tháng 8 2017

a) 

S = 4 + 42 + 43 + ... + 499 + 4100

S = ( 4 + 42 ) + ( 4+ 44 ) + ... + ( 499 + 4100 )

S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)

S = 4.5 + 43.5 + .. + 499.5

S = ( 4 + 43 + .. +499).5 => S \(⋮\)5

b) S = 2 + 22 + 23 + ... + 22009  + 22010

=> S \(⋮\)2

S = = 2 + 22 + 23 + ... + 22009 + 22010

S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )

S = 2.3 + 23.3 +... +22009.3

S = ( 2 + ... +22009 ) x 3

=> s\(⋮\) 3

=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6

9 tháng 2 2017

\(S=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{99}+2^{100}\right)\)

\(S=1\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(S=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)

\(S=6.Q\)

\(S=2.3.Q\)

\(\Rightarrow S⋮3\) (Đpcm)

9 tháng 2 2017

S= (2+22)+(23+24)+...+(299+2100)

S=(2.3)+(23.3)+...+(299.3)

S=(2+23+...+299).3

=> S chia hết cho 3.

b) Tương tự ghép 4 số sẽ được A chia hết cho 5.A chia hết cho 3 và 5 nên A chia hết cho 15...

2) 21+22+23+24 có tận cùng là 0

25+26+27+28 có tận cùng là 0

Vì có 21 đến 2100 là 100 số, vậy cứ nhóm 4 số như vậy được tận cùng là 0

Chúc bạn học tốt!

12 tháng 10 2017

giúp mik vs

12 tháng 10 2017

Bạn biết tính tổng dãy này không?

S = 1 + 2 + 3 + .... + 100

S = 100 + 99 + 98 + .... + 1

2S = 101 + 101 + 101 + .... + 101 (100 số hạng 101)

2S = 101 .100 = 5050

Vì kết quả của S có chữ số tận cùng bằng không nên S chia hết cho 2 và 5

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

5 tháng 9 2015

bai 1:

=>3S + 1.2.3+2.3.3+...+99.100.3

=>1.2.3+2.3(4-1)+3.4(5-2)+...+99.100(101-98)

=>1.2.3+2.3.4-1.2.3+3.4.5+-2.3.4+...+99.100.101-98.100.101

=>99.100.101=999900

=>S=333300

21 tháng 2 2016

1*2=1/3*(1*2*3-0*1*2)

2*3=1/3(2*3*4-1*2*3)

3*4=1/3(3*4*5-2*3*4)

...

99*100=1/3(99*100*101-98*99*100)

ta đi triệt tiêu, ta thấy trong ngoặc phép tính trên ở trong ngoặc có biểu thức đầu bị biểu thức sau của phép tính dưới triệt tiêu đi nên:

B=99*100*101/3

16 tháng 12 2020
. .
16 tháng 12 2020

as molie