Chứng minh f(x) = x4-x3+2x2+1 không có nghiệm âm. các bạn giải giúp mình bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thay từng số 1,-1,5,-5 vào đa thức f(x)
Nếu số nào thay vào mà f(x)=0 thì số đó là nghiệm của đa thức
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
Thay x = 1 vào đa thứ F(x) ta cso
F(x) = 14 + 2.13 - 2.12- 6.1 + 5
F (x) = 0
Vậy 1 không phải là nghiệm của đa thức F(x)
Thay x = -1 vào đa thức F(x) ta có
F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5
F(x) = 8
Vậy -1 không phải là nghiệm của đa thức F(x)
Thay x = 2 vào đa thức F(x) ta có
F(x) = 24 + 2.23 - 2.22- 6.2 + 5
F(x) = 17
Vậy 2 không phải là nghiệm của đa thức F(x)
Thay x = 12 vào đa thức F(x) ta có
F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5
F(x)= -7
Vậy -2 không phải là nghiệm của đa thức F(x)
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)
d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)
a) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
b) Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Giả sử f(x) có nghiệm nguyên
=>x3-x=5
=>x(x2-1)=5
Nếu x chẵn thì x(x2-1) chẵn, loại
Nếu x lẻ thì x2 lẻ =>x2-1 chẵn => x(x2-1) chẵn, loại
Vậy f(x) ko có nghiệm nguyên