Giải bất phương trình sau
x+/x+1/>5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2+2x+3>2`
`<=>x^2+2x+1>0`
`<=>(x+1)^2>0`
`<=>x+1 ne 0`
`<=>x ne -1`
`(x+5)(3x^2+2)>0`
Vì `3x^2+2>=2>0`
`=>x+5>0<=>x>-5`
c) Ta có: \(21x-10x^2+9< 0\)
\(\Leftrightarrow10x^2-21x-9>0\)
\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)
\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)
\(x+\sqrt{x}+12=0\)đk : x >= 0
Vì \(x+\sqrt{x}+12=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+12\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\)
Vậy pt vô nghiệm
\(\left|1-x\right|+\left|2x-1\right|>5\)(*)
* Xét khoảng \(x< \frac{1}{2}\)thì \(\hept{\begin{cases}1-x>0\\2x-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}\left|1-x\right|=1-x\\\left|2x-1\right|=1-2x\end{cases}}\)
(*)\(\Leftrightarrow\left(1-x\right)+\left(1-2x\right)>5\Leftrightarrow-3x>3\Leftrightarrow x< -1\)
Nghiệm của bất phương trình thuộc khoảng này là \(x< -1\)
* Xét khoảng \(\frac{1}{2}\le x\le1\)thì \(\hept{\begin{cases}1-x\ge0\\\left|2x-1\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left|1-x\right|=1-x\\\left|2x-1\right|=2x-1\end{cases}}\)
(*)\(\Leftrightarrow\left(1-x\right)+\left(2x-1\right)>5\Leftrightarrow x>5\)(Nghiệm này không thuộc khoảng đang xét)
* Xét khoảng \(x>1\)thì \(\hept{\begin{cases}1-x< 0\\2x-1>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|1-x\right|=x-1\\\left|2x-1\right|=2x-1\end{cases}}\)
(*)\(\Leftrightarrow\left(x-1\right)+\left(2x-1\right)>5\Leftrightarrow3x>7\Leftrightarrow x>\frac{7}{3}\)
Nghiệm của bất phương trình thuộc khoảng này là \(x>\frac{7}{3}\)
Vậy nghiệm của bất phương trình đã cho là \(x< -1\);\(x>\frac{7}{3}\)
|1-x| + |2x-1| >5
<=> \(1-2x+x^2+4x^2-4x+1>25\)
<=> \(5x^2-6x+2-25>0\)
Tới đây là tự giải được rồi :3
\(\left|x-1\right|+\left|x-5\right|>8\left(1\right)\)
Nếu x < 1 thì (1) trở thành:
\(1-x+5-x>8\Leftrightarrow6-2x>8\Leftrightarrow-2x>2\Leftrightarrow x< -1\)
Kết hợp với x < 1 thì x < -1
Nếu \(1\le x< 5\) thì (1) trở thành:
\(x-1+5-x>8\Leftrightarrow4>8\)(vô lý)
Nếu x > 5 thì (1) trở thành:
\(x-1+x-5>8\Leftrightarrow2x-6>8\Leftrightarrow2x>14\Leftrightarrow x>7\)
Kết hợp x > 5 thì được x > 7
Vậy x > 7 hoặc x < -1