Giải bất phương trình sau
x+/x+1/>5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2+2x+3>2`
`<=>x^2+2x+1>0`
`<=>(x+1)^2>0`
`<=>x+1 ne 0`
`<=>x ne -1`
`(x+5)(3x^2+2)>0`
Vì `3x^2+2>=2>0`
`=>x+5>0<=>x>-5`
c) Ta có: \(21x-10x^2+9< 0\)
\(\Leftrightarrow10x^2-21x-9>0\)
\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)
\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)
\(x+\sqrt{x}+12=0\)đk : x >= 0
Vì \(x+\sqrt{x}+12=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+12\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\)
Vậy pt vô nghiệm
\(\left|x-5\right|=2x\)ĐK : x>=0
TH1 : x - 5 = 2x <=> x = -5 ( loại )
TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )
Vậy tập nghiệm pt là S = { 5/3 }
\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)
\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)
\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)
Vậy tập nghiệm bft là S = { x | x > = -1 }
Ta có: \(\left|x-5\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)
1) Ta có: \(4x+8=3x-1\)
\(\Leftrightarrow4x-3x=-1-8\)
\(\Leftrightarrow x=-9\)
2) Ta có: \(10-5\left(x+3\right)>3\left(x-1\right)\)
\(\Leftrightarrow10-5x-15-3x+3>0\)
\(\Leftrightarrow-8x>2\)
hay \(x< \dfrac{-1}{4}\)
`(x-3)/5+1<2x-5`
`<=>x-3+5<5(2x-5)`
`<=>x+2<10x-25`
`<=>8x>27`
`<=>x>27/8`
Vậy `S={x|x>27/8}`
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)
ĐKXĐ: x ≠ 2; \(x\ne\dfrac{1}{2}\)
\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)
\(\Leftrightarrow\dfrac{3}{x-2}-\dfrac{5}{2x-1}\ge0\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{\left(x-2\right)\left(2x-1\right)}\ge0\)
\(\Leftrightarrow\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}\ge0\)
*Với: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}=0\)
=> x + 7 = 0
<=> x =-7
*Với \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) (1)
Ta lâpj bảng xét dấu:
x |
| -7 |
| 1/2 |
| 2 |
|
X + 7 | - | 0 | + | | | + | | | + |
2x – 1 | - | | | - | 0 | + | | | + |
X - 2 | - | | | - | | | - | 0 | + |
BĐT (1) | - | 0 | + | || | - | || | + |
Từ bảng trên ta có thể thấy: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) khi -7 < x < 1/2 hoăcj x > 2
Vayj:.............