K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2022

\(\Delta=\left(1+\sqrt{2}\right)^2-4\sqrt{2}=3+2\sqrt{2}-4\sqrt{2}=3-2\sqrt{2}\)

Vậy pt có 2 nghiệm pb 

\(x_1=\dfrac{1+\sqrt{2}-\sqrt{3-2\sqrt{2}}}{2}=\dfrac{1+\sqrt{2}-\sqrt{2}+1}{2}=1;x_2=\dfrac{1+\sqrt{2}+\sqrt{2}-1}{2}=\sqrt{2}\)

12 tháng 2 2022

 xin latex dc ko ạ ?

12 tháng 7 2018

1)    \(\left(x+\sqrt{x^2+\sqrt{2005}}\right)\left(\sqrt{x^2+\sqrt{2005}}-x\right)=\sqrt{2005}\)

Kết hợp với giả thiết ta được:

     \(\sqrt{x^2+\sqrt{2005}}-x=y+\sqrt{y^2+\sqrt{2005}}\)

suy ra: đpcm

2)     \(\left(x+\sqrt{x^2+\sqrt{2005}}\right)\left(y+\sqrt{y^2+\sqrt{2005}}\right)=\sqrt{2005}\)

Ta có:  \(\hept{\begin{cases}\left(x+\sqrt{x^2+\sqrt{2005}}\right)\left(\sqrt{x^2+\sqrt{2005}}-x\right)=\sqrt{2005}\\\left(y+\sqrt{y^2+\sqrt{2005}}\right)\left(\sqrt{y^2+\sqrt{2005}}-y\right)=\sqrt{2005}\end{cases}}\)

Kết hợp với giả thiết ta có:

\(\hept{\begin{cases}\sqrt{x^2+\sqrt{2005}}-x=y+\sqrt{y^2+\sqrt{2005}}\\\sqrt{y^2+\sqrt{2005}}-y=x+\sqrt{x^2+\sqrt{2005}}\end{cases}}\)

suy ra:  \(x+y=-\left(x+y\right)\)

\(\Rightarrow\)\(S=x+y=0\)

27 tháng 4 2022

Điều kiện xác định: x ≥ \(\dfrac{1}{3}\) 

<=> \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)  

<=>  \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=\left(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\right).\left(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\right)\)\(\left(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\right).\left(1-\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\right)=0\)<=>\(\left[{}\begin{matrix}\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\left(1\right)\\1=\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}\left(2\right)\end{matrix}\right.\)

từ (1) ta có \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)

<=> 4x2 + 5x + 1 = 4x2 - 4x + 4 

<=> 9x = 3 => x = \(\dfrac{1}{3}\)

từ (2) ta có: 1 = 8x2 + x + 5 - \(2\sqrt{16x^4+4x^3+16x+4}\)

<=> 8x2 + x + 4 = 2\(\sqrt{16x^4+4x^3+16x+4}\) 

ta có xét delta VT thấy pt vô nghiệm 

VP dễ thấy phương trình có nghiệm x = \(\dfrac{-1}{4}\);-1 

ta suy ra 2 vế phương trình không bằng nhau nên pt (2) vô nghiệm.

vậy S={\(\dfrac{1}{3}\)

 

28 tháng 4 2022

nếu bạn xem rồi thì cho mình 1 like nha ghi bài giải hơi mệt nên mong bạn cho mình một like 

14 tháng 2 2022

\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)

\(\Leftrightarrow\sqrt{2x^2+x+9}-\left(\frac{1}{2}x+3\right)+\sqrt{2x^2-x+1}-\left(\frac{1}{2}x+1\right)=0\)

\(\Leftrightarrow\frac{2x^2+x+9-\left(\frac{1}{2}x+3\right)^2}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{2x^2-x+1-\left(\frac{1}{2}x+1\right)^2}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}=0\)

\(\Leftrightarrow\frac{\frac{1}{4}x\left(7x-8\right)}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{\frac{1}{4}x\left(7x-8\right)}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}=0\)

\(\Leftrightarrow\frac{1}{4}x\left(7x-8\right)\left(\frac{1}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{2x^2+x+9}+\frac{1}{2}x+3}+\frac{1}{\sqrt{2x^2-x+1}+\frac{1}{2}x+1}>0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\7x-8=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{8}{7}\end{cases}}\)

ĐKXĐ:....

Đặt \(\sqrt{2x^2+x+9}=a;\sqrt{2x^2-x+1}=b\)\(\left(a,b>0\right)\)

\(\Rightarrow a^2-b^2=2x^2+x+9-2x^2+x-1=2x+8=2\left(x+4\right)\)

Từ pt ta có:

\(a+b=\dfrac{a^2-b^2}{2}\)\(\Leftrightarrow2\left(a+b\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\left(loại\right)\\a-b-2=0\end{matrix}\right.\)\(\Leftrightarrow a-b=2\)

\(\Leftrightarrow\sqrt{2x^2+x+9}-\sqrt{2x^2-x+1}=2\)

Đến đoạn này giải bằng phương pháp bình phương cả 2 vế, tìm được các giá trị, đối chiếu xem thoả mãn ĐKXĐ không và kết luận tập nghiệm.

13 tháng 8 2016
Bài này đâu khó. Bạn cứ rút gọn từ từ từng phân số là ra mà
13 tháng 8 2016

Mấy bài này bạn trẻ không biết làm hay cố tình không làm thế?

Cái tag Violympic là sao?

NV
27 tháng 7 2021

Xài Bunhiacopxki thì bài này sẽ hơi dài:

Đặt vế trái là P

Ta có:

\(\left(\dfrac{1}{4}+4\right)\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)

\(\Leftrightarrow\dfrac{17}{4}\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)

\(\Rightarrow\sqrt{x^2+\dfrac{1}{x^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{2}{x}\right)\)

Tương tự:

\(\sqrt{y^2+\dfrac{1}{y^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{y}{2}+\dfrac{2}{y}\right)\) ; \(\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{z}{2}+\dfrac{2}{z}\right)\)

Cộng vế: \(P\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{y}{2}+\dfrac{z}{2}+\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right)\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{36}{x+y+z}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{9}{4\left(x+y+z\right)}+\dfrac{135}{4\left(x+y+z\right)}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(2\sqrt{\dfrac{9\left(x+y+z\right)}{4\left(x+y+z\right)}}+\dfrac{135}{4.\dfrac{3}{2}}\right)=\dfrac{3}{2}\sqrt{17}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

10 tháng 8 2017

\(\sqrt{x^2+4}=x+2\)

\(x+2=\left(x+2\right)^2\)

\(x+2=x^2+4x+4\)

\(x^2+3x+2=0\)

\(x^2+x+2x+2=0\)

\(x\left(x+1\right)+2\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+2\right)=0\)

  • (x+1)=0=>x=-1
  • (x+2)=0=>x=-2

Tại năm nay mk cũng lên lớp 9 nên cx k bt đúng hay sai nữa.Nếu đúng thì k cho mk nhé ^_^

18 tháng 8 2017

của bn đúng rùi đó .mk giải dc hết rùi