K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

 Gọi d là ƯCLN của n+1 và 2n+3, ta có:

(2n+3)-(n+1) chia hết cho d

=> (2n+3)-2(n+1) chia hết cho d

=> 2n+3-2n-2 chia hết cho d

=> 2n-2n+3-2 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy n+1/2n+3 là 2 phân số tối giản 

Ai kết bạn vs mình ko mình hết lượt rồi

DD
14 tháng 1 2021

Đặt \(d=\left(2n+1,2n^2-1\right)\).

\(\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}\Rightarrow}\left[\left(2n^2+n\right)-\left(2n^2-1\right)\right]⋮d\)

\(\Rightarrow\left(n+1\right)⋮d\Rightarrow\left[2\left(n+1\right)-\left(2n+1\right)\right]⋮d\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\left(2n+1,2n^2-1\right)=1\)

Suy ra đpcm. 

Gọi d là ƯCLN (4n+3;2n+1)

Ta có 4n+3 chia hết cho d(1);2n+1 chia hết cho d

                                              =>2*(2n+1) chia hết cho d

                                              =>4n+2 chia hết cho d(2)

Từ (1) và (2)=>(4n+3)-(4n+2) chia hết cho d

                     =>    1 chia hết cho d

                     =>d=1

Vì d=1 nên ƯCLN (4n+3;2n+1)=1

=>Phân số \(\frac{4n+3}{2n+1}\) là phân số tối giản với mọi số tự nhiên n

5 tháng 7 2019

CM:

Để n + 3/n + 4 tối giản <=> ƯCLN(n + 3; n + 4) \(\in\){1; -1}

Gọi ƯCLN(n + 3;n + 4) = d 

=> n + 3 \(⋮\)d ; n + 4 \(⋮\)d

=> (n + 3) - (n + 4) = -1 \(⋮\)d => d \(\in\){1; -1}

=> \(\frac{n+3}{n+4}\)là p/số tối giản \(\forall\)n

Để \(\frac{n+1}{2n+3}\) tối giản <=> ƯCLN(n + 1;2n + 3) \(\in\){1; -1}

Gọi d là ƯCLN(n + 1;2n + 3}

=> n + 1 \(⋮\)d      => 2(n + 1) \(⋮\)d     => 2n + 2 \(⋮\)d

 => 2n + 3 \(⋮\)d

=> (2n + 2) - (2n + 3) = -1 \(⋮\)d => d \(\in\){1; -1}

=> \(\frac{n+1}{2n+3}\)tối giản \(\forall\)n

5 tháng 7 2019

a) Gọi ƯCLN(n+3,n+4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\)=> \(\left(n+4\right)-\left(m+3\right)⋮d\)=> \(n+4-n-3⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(n + 1,2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> \(\left(2n+3\right)-\left(2n+2\right)⋮d\)

=> \(2n+3-2n-2\)

=> \(1⋮d\)

=> \(d=1\)

=>  \(\frac{n+1}{2n+3}\)là phân số tối giản

DD
27 tháng 2 2021

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

27 tháng 2 2021
N=2 2n=2.10
9 tháng 5 2017

Gọi p là ƯC(2n+3,4n+8)

Ta có

2n+3 chia hết cho p <=> 1(2n+3) chia hết cho p

4n+8 chia hết cho p <=> (4n+8):2 chia hết cho p

=> (4n+8):2 - 1(2n+3) chia hết cho p

=> 2n+4 - 2n+3 chia hết cho p

=> 1 chia hết cho p

=> p thuộc Ư(1)

=> 2n+3 / 4n+8 là phân số tối giản