Cho phương trình x2 - 2mx +m2 - 1 = 0 (1), m là tham số. Tìm m để tồn tại một tam giác vuông nhận hai nghiệm x1 ,x2, của phương trình (1) làm độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng 10 (đơn vị độ dài)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình x 2 - m x + m 2 - 3 = 0 có hai nghiệm x 1 , x 2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 khi và chỉ khi:
Δ = m 2 − 4 m 2 + 12 ≥ 0 S = x 1 + x 2 = m > 0 P = x 1 . x 2 > 0 x 1 2 + x 2 2 = 4 ⇔ 3 < m ≤ 4 m > 0 x 1 + x 2 2 − 2 x 1 x 2 = 4
⇔ 3 < m ≤ 2 m 2 − 2 m 2 − 3 = 4 ⇔ 3 < m ≤ 2 m 2 = 2 ⇔ m ∈ ∅
Đáp án cần chọn là: D
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
\(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m-1\right)^2\ge0\) ;\(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Do \(x_1;x_2\) là độ dài 2 cạnh tam giác nên \(x_1>0;x_2>0\)
\(\Rightarrow\left\{{}\begin{matrix}m+5>0\\3m+6>0\end{matrix}\right.\) \(\Rightarrow m>-2\)
Khi đó, áp dụng định lý Pitago:
\(x_1^2+x_2^2=5^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)
\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\)
\(\Leftrightarrow m^2+4m-12=0\Rightarrow\left[{}\begin{matrix}m=-6< -2\left(loại\right)\\m=2\end{matrix}\right.\)
ta có
△=(m-2)2-4(m-3)=m2-4m+4-4m+12=m2-8m+16=(m-4)2
để phương trình có 2 nghiệm phân biệt thì △>0 suy ra m≠4
nhận xét:
x1,x2 là độ dài của 2 tam giác vuông cân mà x1,x2 phân biệt nên
x1=\(-x2\) vì độ dài thì sẽ bằng |x1| và |x2|
áp dụng hệ thức vi-et ta có:
\(\begin{cases} x1+x2=m-2(1)\\ x1x2=m-3(2) \end{cases}\)→x1+x2-1=x1x2 \(\Leftrightarrow \)(x1-1)(x2-1)=0
\(\Leftrightarrow \)\(\left[\begin{array}{} x1=1\\ x2=1 \end{array} \right.\)\(\Leftrightarrow \)x1x2=-1(vì x1=-x2) \(\Leftrightarrow \)m-3=-1\(\Leftrightarrow \)m=2
vậy m=2 thì....
Để phương trình có 2 nghiệm:
\(\Delta\ge0\Rightarrow\left[-\left(m+2\right)\right]^2-4.1.\left(3m-3\right)\ge0\\ \Leftrightarrow m^2+4m+4-12m+12\ge0\\ \Leftrightarrow m^2-8m+16\ge0\forall m\)
Theo Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left[-\left(m+2\right)\right]}{1}=m+2\\x_1.x_2=\dfrac{3m-3}{1}=3m-3\end{matrix}\right.\)
x1, x2 là độ dài của một giam giác vuông có cạnh huyền bằng 5.
Theo định lý Py-ta-go ta có:
\(x_1^2+x_2^2=5^2\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=25\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\\ \Leftrightarrow\left(m+2\right)^2-2.\left(3m-3\right)=25\\ \Leftrightarrow m^2+4m+4-6m+6-25=0\\ \Leftrightarrow m^2-2m-15=0\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
Vậy...
a: Khi m=-3 thì (1): x^2-(-x)-2=0
=>x^2+x-2=0
=>x=-2 hoặc x=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có 2 nghiệm