Tìm 2 số biết UCLN=3, BCNN=60, tổng=27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*: Gọi số thứ nhất là a; số thứ hai là b
Ta có a+b=27
Vì a chia hết cho 3;b chia hết cho 3
=>a có dạng 3k;b có dạng 3n(n;k EN/ƯCLN(n;k)=1)
=>3k+3n=27
3*(k+n)=27
(k+n)=27:3
(k+n)=9
Ta có bảng giá trị sau:
k | n | a | b |
1 | 8 | 3 | 24(loại vì BCNN=24) |
2 | 7 | 6 | 21(loại vì BCNN=42) |
4 | 5 | 12 | 15(thỏa) |
5 | 4 | 15 | 12(thỏa) |
7 | 2 | 21 | 6(loại) |
8 | 1 | 24 | 3(loại) |
Vậy hai số cần tìm là 12 và 15
*:đang nghĩ
Gọi 2 số cần tìm là a,b
bcnn ( a,b) =6 nhân ưcln (a,b) =6*12=72
ta có bcnn(a,b) nhân ưcln (a,b) =a*b
suy ra 72*12=24*b suy ra b= 36
vậy 2 số cần tìm là a=24 ,b=36
2 ) ucln của 56 và 140
56 = 23 . 7
140 = 7 . 5 . 22
vậy ucln của 56 và 140 là 28
Bội chung nhỏ nhất của 2 số đó : 280
Tích của 2 số đó : 56 . 140 = 7840
Tích của ucln và bcnn của 2 số đó : 7840
Vậy bcnn < tích của 2 số
ucln . bcnn = tích của 2 số
3 / a ) 17 và 27
Vì hai số đã cho là từng cặp số nguyên tố nên BCNN của 2 số đó : 17 . 27 = 459
Đây là bội chung nhỏ nhất , muốn tìm các bội chung khác, ta nhân số này với 2 ; 3 ; 4 ; 5 ; 6 ....
b ) 45 = 32 . 5
48 = 3 . 24
BCNN của 2 số trên là 720
Tương tự a và b , ta làm được câu c
Đậu má chúng mày không giải thì tao làm sao chép được fuckkkkkkkkkkkkkk
Đjt mọe m ngta đéo rảnh để lm cho m,tự lm đê ,nghĩ đi =) có não cơ mà
Ta có :
\(ƯCLN\left(a;b\right)=3\Leftrightarrow\left\{{}\begin{matrix}a=3.a_1\\b=3.b_1\\ƯCLN\left(a_1;b_1\right)=1\end{matrix}\right.\)\(\left(1\right)\)
Mà \(a+b=27\) \(\left(2\right)\)
Thay \(\left(1\right)\) vào \(\left(2\right)\) ta có :
\(3.a_1+3.b_1=27\)
\(3\left(a_1+b_1\right)=27\)
\(\Leftrightarrow a_1+b_1=9\)
Ta có bảng :
\(a_1\) | \(b_1\) | \(a\) | \(b\) | \(Đk\) \(a+b=27\); \(a;b\in N\)\(ƯCLN\left(a;b\right)=3,BCNN\left(a,b=60\right)\) |
\(1\) | \(8\) | \(3\) | \(24\) | loại |
\(2\) | \(7\) | \(6\) | \(21\) | loại |
\(4\) | \(5\) | \(12\) | \(15\) | thỏa mãn |
\(5\) | \(4\) | \(15\) | \(12\) | thỏa mãn |
\(7\) | \(2\) | \(21\) | \(6\) | loại |
\(8\) | \(1\) | \(24\) | \(3\) | loại |
Vậy \(\left(a,b\right)\) cần tìm là \(\left(15;12\right),\left(12,15\right)\)
Vì ƯCLN(a , b) = 3 và BCNN (a , b) = 60
\(\Rightarrow a+b=3+60=63\)
Vì ƯCLN(a , b) = 3 nên : a = 3m và b = 3n với (m , n) = 1
\(a+b=63\)
\(\Rightarrow3m+3n=63\)
\(\Rightarrow3\times\left(m+n\right)=63\)
\(\Rightarrow m+n=21\)
Vì \(a,b\in N^{\circledast}\), ta lập bảng ra và rõ ràng có thể thấy:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m=1\\n=20\end{matrix}\right.\\\left\{{}\begin{matrix}m=20\\n=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3\\b=60\end{matrix}\right.\\\left\{{}\begin{matrix}a=60\\b=3\end{matrix}\right.\end{matrix}\right.\)
Và ta cũng có thể thấy các kết quả khác đều không phù hợp với giả thiết.
Chúc em học tốt!!!
Bài này làm rồi nhưng mình cần cách làm đầy đủ, ko đoán mò 1 bước nào cả
gọi 2 số fai tìm là a và b
vì a*b=BCLN*UCLN của a và b
=>a*b=3*60=180 (1)
tổng =27 =>a+b=27 (2)
từ (1) và (2) => ta có hệ \(\int^{a\times b=180}_{a+b=27}\)
giải hệ ta đc: a=12 hoặc 15
b=15 hoặc 12
KL:Vậy ...