cho tam giác ABC ,biết AB = 3 cm,AC = 4 cm,BC = 5 cm. trên tia đối của tia AC lấy điểm D sao cho AD=AC
a)chứng minh tam giac ABC vuông
b) chứng minh tam giac BCD cân
c) goi E la trung điểm BC, CE cắt AB tại O .tinh OA,OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔBDA và ΔBCA có:
AB là cạnh chung
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AD=AC(gt)
\(\Rightarrow\Delta BDA=\Delta BCA\)(c-g-c)
\(\Rightarrow BD=BC\)(2 cạnh tương ứng)
\(\Rightarrow\Delta BCD\) cân tại B(đ.p.ch/m)
vì E là trung điểm của BD
\(\Rightarrow CE\) là đường trung tuyến
vì AD=AC \(\Rightarrow\)AB là đường trung tuyến
Do đó O là trọng tâm của ΔBCD
\(\Rightarrow OA=\dfrac{1}{3}AB\)
Mà AB=a \(\Rightarrow OA=\dfrac{1}{3}a\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
1: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
2: Xét ΔBCD có
BA là đường cao
BA là đường trung tuyến
Do đó: ΔBCD cân tại B
3: Xét ΔBCD có
BA là đường trung tuyến
CE là đường trung tuyến
BA cắt CE tại G
Do đó: G là trọng tâm của ΔBCD
=>AG=1/3BA=1(cm)